In previous work, we designed peptides that showed potent inhibition of Newcastle disease virus (NDV) and infectious bronchitis virus (IBV) infections in chicken embryos. In this study, we demonstrate that peptides modified with cholesterol or 3 U of polyethylene glycol (PEG3) conjugated to the peptides' N termini showed even more promising antiviral activities when tested in animal models. Both cholesterol- and cholesterol-PEG3-tagged peptides were able to protect chicken embryos from infection with different serotypes of NDV and IBV when administered 12 h prior to virus inoculation. In comparison, the untagged peptides required intervention closer to the time of viral inoculation to achieve a similar level of protection. Intramuscular injection of cholesterol-tagged peptide at 1.6 mg/kg 1 day before virus infection and then three times at 3-day intervals after viral inoculation protected 70% of the chickens from NDV infection. We further demonstrate that the cholesterol-tagged peptide has an in vivo half-life greater than that of untagged peptides. It also has the potential to cross the blood-brain barrier to enter the avian central nervous system (CNS). Finally, we show that the cholesterol-tagged peptide could play a role before the viral fusion peptide's insertion into the host cell and thereby target an earlier stage of fusion glycoprotein activation. Our findings are of importance for the further development of antivirals with broad-spectrum protective effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754040PMC
http://dx.doi.org/10.1128/JVI.01153-13DOI Listing

Publication Analysis

Top Keywords

cholesterol-tagged peptide
12
earlier stage
8
stage fusion
8
fusion glycoprotein
8
glycoprotein activation
8
chicken embryos
8
untagged peptides
8
viral inoculation
8
peptides
5
cholesterol tag
4

Similar Publications

Extracellular vesicles (EVs) are nanosized intercellular messengers that bear enormous application potential as biological drug delivery vehicles. Much progress has been made for loading or decorating EVs with proteins, peptides or RNAs using genetically engineered donor cells, but post-isolation loading with synthetic drugs and using EVs from natural sources remains challenging. In particular, quantitative and unambiguous data assessing whether and how small molecules associate with EVs versus other components in the samples are still lacking.

View Article and Find Full Text PDF

There is a major unmet need for the development of effective therapies for diabetes induced inflammation. Increased adenosine-uridine rich elements (AREs) containing mRNAs of inflammatory molecules are reported in inflamed monocytes. Destabilizing these inflammatory mRNAs by the miR-16 could reduce inflammation.

View Article and Find Full Text PDF

Design of artificial α-helical peptides targeting both gp41 deep pocket and subpocket as potent HIV-1 fusion inhibitors.

Eur J Med Chem

June 2022

Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 131 Dong An Road, Shanghai, 200032, China. Electronic address:

Both the deep pocket region and its neighboring subpocket site on the N-trimer of HIV-1 gp41 protein can serve as targets for the development of HIV-1 entry inhibitors. Pocket-binding domain (PBD)-containing peptides with the potential to inhibit HIV-1 fusion through targeting the deep pocket have been extensively exploited. However, using an artificial peptide strategy, we herein report the design of α-helical lipopeptides with non-native protein sequences as HIV-1 fusion inhibitors that can occupy both gp41 deep cavity and subpocket sites.

View Article and Find Full Text PDF

Conformational changes of viral glycoproteins govern the fusion of viral and cellular membranes in the entry of enveloped viruses. Peptides mimicking domains of viral glycoproteins are apt to interfere with the fusion event, likely hampering the conformational rearrangements from the pre- to the post-fusion structures. We previously developed a peptide sequence with a high potential to inhibit the entry of herpes simplex type 1, which was able to trap glycoprotein B at an intermediate stage, arresting fusion.

View Article and Find Full Text PDF

Long-acting injectable antiretroviral (LA-ARV) drugs with low toxicity profiles and propensity for drug-drug interactions are a goal for future ARV regimens. C34-PEG-Chol is a novel cholesterol tagged LA HIV-fusion-inhibitor (FI). We assessed pre-clinical toxicology and first-in-human administration of C34-PEG-Chol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!