Objective: Circulating macrophage migration inhibitory factor (MIF) levels have been shown to positively correlate with body mass index (BMI) in humans. Our objective in this study was to determine the effects of MIF deficiency in a model of high-fat diet-induced obesity.

Design And Methods: MIF wild type (MIF WT) and MIF deficient (MIF(-/-)) C57Bl/6J mice were fed a high-fat diet (HFD) for up to 15 weeks. Weight and metabolic responses were measured over the course of the disease. Immune cell infiltrates in visceral and subcutaneous adipose tissue were examined by flow cytometry.

Results: There was no difference in weight gain or adipose tissue mass in MIF(-/-) mice compared to MIF WT mice. Both groups fed HFD developed glucose intolerance at the same rate and had similar elevations in fasted blood insulin. MDSC abundance was evaluated and showed no MIF-dependent differences. Macrophages were elevated in the visceral adipose tissue of obese mice, but there was no difference between the two groups.

Conclusions: While HFD feeding induced obesity with the expected perturbations in glucose homeostasis and adipose tissue inflammation, the presence or absence of MIF had no effect on any parameter examined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809343PMC
http://dx.doi.org/10.1002/oby.20555DOI Listing

Publication Analysis

Top Keywords

adipose tissue
20
mif
8
mif deficiency
8
glucose homeostasis
8
homeostasis adipose
8
cell infiltrates
8
adipose
5
tissue
5
deficiency alter
4
alter glucose
4

Similar Publications

Transcriptional regulation of adipocyte lipolysis by IRF2BP2.

Sci Adv

January 2025

Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by posttranslational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis.

View Article and Find Full Text PDF

With complex pathogenesis, Alzheimer's disease (AD) is a neurological illness that has worsened over time. Inter-organ crosstalk, which is essential for coordinating organ function and maintaining homeostasis, is involved in multiple physiological and pathological events. Increasing evidence suggests that AD is closely associated with multiple diseases of peripheral organs, including the gut, adipose tissue, liver, and bone.

View Article and Find Full Text PDF

Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD.

View Article and Find Full Text PDF

Background: Microfragmented adipose tissue has been proposed for intra-articular treatment of knee osteoarthritis. There are little data comparing the outcomes of treatment between microfragmented adipose tissue and other biological treatments.

Purpose: To perform a systematic review and meta-analysis comparing microfragmented aspirated fat injections to other orthobiologics, hyaluronic acid, and corticosteroid injections for symptomatic knee osteoarthritis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio De Janeiro, Rio de Janeiro, Brazil.

Background: Age-related decrease glucose utilization, coupled with insulin resistance, are key features of AD, resulting in reduced glucose utilization/catabolism and oxidative stress generation. Irisin, an exercise-induced hormone promoting mitochondrial biogenesis in adipocytes via PGC-1α, stimulates thermogenic pathways, increases energy expenditure and induces browning of adipose tissue. Further, irisin expression was shown to trigger neuroprotection in AD models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!