Objective: To detect the expression of CXCL14 in human osteosarcoma cell lines and tissues and investigate its association with the prognosis of the patients.
Methods: RT-PCR, enzyme-linked immunosorbent assay (ELISA) and real-time PCR were used to detect the expression of CXCL14 in 4 osteosarcoma cell lines and in 40 pairs of osteosarcoma tissues and adjacent muscular tissues. CCK8 assay and colony formation assay was used to assess the effect of CXCL14 suppression mediated by two specific siRNAs on the proliferation of U2OS osteosarcoma cells. Immunohistochemistry was performed to detect the expression of CXCL14 in 58 osteosarcoma tissues, and Kaplan-Meier method and log-rank test were performed for survival analysis of the patients.
Results: Significant up-regulation of CXCL14 expression was found in the osteosarcoma cell lines and in osteosarcoma tissues compared with the adjacent muscles (P<0.01). In U2OS cell, suppression of CXCL14 expression by siRNA significantly inhibited the cell proliferation (P<0.01) and colony formation rate (P<0.05). Kaplan-Meier survival analysis indicated that patients with high CXCL14 expression had worse prognosis than those with low CXCL14 expression (P=0.02).
Conclusion: CXCL14 is up-regulated in both osteosarcoma cell lines and primary osteosarcoma tissues to promote the proliferation of osteosarcoma cells. A high CXCL14 expression in osteosarcoma tissues is associated with a poor prognosis, suggesting the that CXCL14 serve as a potential therapeutic target for osteosarcoma.
Download full-text PDF |
Source |
---|
Gastric Cancer
January 2025
Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.
Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.
Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.
Arch Dermatol Res
January 2025
Department of Dermatology, Zhejiang Provincial Hospital of Dermatology, Huzhou, 313200, China.
Psoriasis is a long-lasting inflammatory skin condition characterized by excessive keratinocyte growth. Recent studies have confirmed abnormal regulation of microRNAs (miRNAs/miRs) in individuals with psoriasis. This study aimed to investigate the function and specific mechanism of action of miR-128a-3p in interleukin-22 (IL-22)-stimulated HaCaT cells.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Respiratory and Critical Care Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, No. 111, Dade Road, Guangzhou, 510120, China.
Berberine (BBR) has been proved to inhibit the malignant progression of non-small cell lung cancer (NSCLC), but the underlying molecular mechanism still needs to be further revealed. NSCLC cells (A549 and H1299) were treated with BBR. CCK8 assay, colony formation assay, flow cytometry, TUNEL staining and transwell assay were used to examine cell proliferation, apoptosis and invasion.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
Zentalis Pharmaceuticals, Inc., San Diego, CA, USA.
Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!