We present an equation of state as well as a phase diagram of ammonia at high pressures and high temperatures derived from ab initio molecular dynamics simulations. The predicted phases of ammonia are characterized by analyzing diffusion coefficients and structural properties. Both the phase diagram and the subsequently computed Hugoniot curves are compared to experimental results. Furthermore, we discuss two methods that allow us to take into account nuclear quantum effects, which are of considerable importance in molecular fluids. Our data cover pressures up to 330 GPa and a temperature range from 500 K to 10,000 K. This regime is of great interest for interior models of the giant planets Uranus and Neptune, which contain, besides water and methane, significant amounts of ammonia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4810883 | DOI Listing |
Ultrasonics
January 2025
School of Information Science and Technology, Beijing University of Technology, Beijing 100124 China.
Carbon steel and low alloy steel are pearlitic heat-resistant steels with a lamellar microstructure. There are good mechanical properties and are widely used in crucial components of high-temperature pressure. However, long-term service in high-temperature environments can easily lead to material degradation, including spheroidization, graphitization, and thermal aging.
View Article and Find Full Text PDFCO flooding plays a crucial role in enhancing oil recovery and achieving carbon reduction targets, particularly in unconventional reservoirs with complex pore structures. The phase behavior of CO and hydrocarbons at different scales significantly affects oil recovery efficiency, yet its underlying mechanisms remain insufficiently understood. This study improves existing thermodynamic models by introducing Helmholtz free energy as a convergence criterion and incorporating adsorption effects in micro- and nano-scale pores.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
The RE-M-Ge systems (RE: rare earths, M: transition group elements) contain a large number of compounds with special magnetic properties. A novel compound ErMnGe was found during the investigation on the phase diagram of the Er-Mn-Ge ternary system, and its crystal structure and magnetic properties were investigated. Powder X-ray diffraction results show that ErMnGe crystallizes in an orthorhombic YNiSi-type structure with the space group Pnma (No.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Ibaraki, Japan.
The sintered diffusion multiple (SDM) method, which has been developed in our research group, has been applied to determine the entire composition range of the CrMnFeCoNi high-entropy alloy stereoscopically and continuously over nearly the entire range. The samples were prepared by sintering mixed elemental powders and were annealed at 970 °C or 800 °C. Several hundreds of thousands of points were analyzed at random within the samples for chemical compositions using electron probe microanalysis.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig 23119, Turkey.
Electroencephalography (EEG) signal-based machine learning models are among the most cost-effective methods for information retrieval. In this context, we aimed to investigate the cortical activities of psychotic criminal subjects by deploying an explainable feature engineering (XFE) model using an EEG psychotic criminal dataset. In this study, a new EEG psychotic criminal dataset was curated, containing EEG signals from psychotic criminal and control groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!