We report a scanning photocurrent microscopy (SPCM) study of colloidal lead selenide (PbSe) quantum dot (QD) thin film field-effect transistors (FETs). PbSe QDs are chemically treated with sodium sulfide (Na2S) and coated with amorphous alumina (a-Al2O3) by atomic layer deposition (ALD) to obtain high mobility, air-stable FETs with a strongly gate-dependent conductivity. SPCM reveals a long photocurrent decay length of 1.7 μm at moderately positive gate bias that decreases to below 0.5 μm at large positive gate voltage and all negative gate voltages. After excluding other possible mechanisms including thermoelectric effects, a thick depletion width, and fringing electric fields, we conclude from photocurrent lifetime measurements that the diffusion of a small fraction of long-lived carriers accounts for the long photocurrent decay length. The long minority carrier lifetime is attributed to charge traps for majority carriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl401698z | DOI Listing |
Chem Sci
November 2024
Department of Chemistry, Indian Institute of Science Education and Research Pune Maharashtra India
Hydrogen selenide (HSe) is a precursor to several selenium-containing biomolecules and is emerging as an important redox-active species in biology, with yet to be completely characterized roles. Tools that reliably generate HSe are key to achieving a better understanding of selenium biology. Here, we report the design, synthesis and evaluation of phenacylselenoesters as sources of HSe.
View Article and Find Full Text PDFJ Phys Chem Lett
August 2024
Center for Ultrafast Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
Nanomaterials (Basel)
November 2023
PhysNano Department, ITMO University, Saint Petersburg 197101, Russia.
Lead chalcogenide nanoplatelets (NPLs) have emerged as a promising material for devices operating in the near IR and IR spectrum region. Here, we first apply the cation exchange method to PbSe/PbS core/shell NPL synthesis. The shell growth enhances NPL colloidal and environmental stability, and passivates surface trap states, preserving the main core physical properties.
View Article and Find Full Text PDFFront Optoelectron
October 2023
Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information, School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, 430074, China.
Lead selenide (PbSe) colloidal quantum dots (CQDs) are suitable for the development of the next-generation of photovoltaics (PVs) because of efficient multiple-exciton generation and strong charge coupling ability. To date, the reported high-efficient PbSe CQD PVs use spin-coated zinc oxide (ZnO) as the electron transport layer (ETL). However, it is found that the surface defects of ZnO present a difficulty in completion of passivation, and this impedes the continuous progress of devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!