Enzyme-entrapped mesoporous silica for treatment of uric acid disorders.

J Biomed Nanotechnol

Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology, SASTRA University Thanjavur, 613401 Tamil Nadu, India.

Published: May 2013

Gout is an abnormality in the body resulting in the accumulation of uric acid mainly in joints. Dissolution of uric acid crystals into soluble allantoin by the enzyme uricase might provide a better alternative for the treatment of gout. This work aims to investigate the feasibility of a transdermal patch loaded with uricase for better patient compliance. Mesoporous silica (SBA-15) was chosen as the matrix for immobilisation of uricase. Highly oriented mesoporous SBA-15 was synthesized, characterized and uricase was physisorbed in the mesoporous material. The percentage adsorption and release of enzyme in borate buffer was monitored. The release followed linear kinetics and greater than 80% enzyme activity was retained indicating the potential of this system as an effective enzyme immobilization matrix. The enzyme permeability was studied with Wistar rat skin and human cadaver skin. It was found that in case of untreated rat skin 10% of enzyme permeated through skin in 100 h. The permeation increased by adding permeation enhancer (combination of oleic acid in propylene glycol (OA in PG)). The permeation enhancement was studied under two concentrations of OA in PG (1%, 5%) in both rat and human cadaver skin and it was found that 1% OA in PG showed better result in rat skin and 5% OA in PG showed good results in human cadaver skin.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jbn.2013.1588DOI Listing

Publication Analysis

Top Keywords

uric acid
12
rat skin
12
human cadaver
12
cadaver skin
12
mesoporous silica
8
skin
7
enzyme
6
enzyme-entrapped mesoporous
4
silica treatment
4
treatment uric
4

Similar Publications

Background: The association between serum uric acid (SUA) and dyslipidaemia is still unclear in patients with type 2 diabetes mellitus (T2DM). This study aimed to examine the association between SUA and dyslipidaemia and to explore whether there is an optimal SUA level corresponding to the lower risk of suffering from dyslipidaemia.

Research Design And Methods: This cross-sectional study included 1036 inpatients with T2DM and the clinical data were extracted from the hospital medical records.

View Article and Find Full Text PDF

A non-purine inhibitor of xanthine oxidoreductase mitigates adenosine triphosphate degradation under hypoxic conditions in mouse brain.

Brain Res

January 2025

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan. Electronic address:

The brain is an organ that consumes a substantial amount of oxygen, and a reduction in oxygen concentration can rapidly lead to significant and irreversible brain injury. The progression of brain injury during hypoxia involves the depletion of intracellular adenosine triphosphate (ATP) due to decreased oxidative phosphorylation in the inner mitochondrial membrane. Allopurinol is a purine analog inhibitor of xanthine oxidoreductase that protects against hypoxic/ischemic brain injury; however, its underlying mechanism of action remains unclear.

View Article and Find Full Text PDF

Quantification of L-lactic acid in human plasma samples using Ni-based electrodes and machine learning approach.

Talanta

December 2024

NanoBiosensors and Biodevices Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. Electronic address:

This work presents a robust strategy for quantifying overlapping electrochemical signatures originating from complex mixtures and real human plasma samples using nickel-based electrochemical sensors and machine learning (ML). This strategy enables the detection of a panel of analytes without being limited by the selectivity of the transducer material and leaving accommodation of interference analysis to ML models. Here, we fabricated a non-enzymatic electrochemical sensor for L-lactic acid detection in complex mixtures and human plasma samples using nickel oxide (NiO) nanoparticle-modified glassy carbon electrodes (GCE).

View Article and Find Full Text PDF

Targeting uric acid: a promising intervention against oxidative stress and neuroinflammation in neurodegenerative diseases.

Cell Commun Signal

January 2025

Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China.

Oxidative stress and neuroinflammation are recognized as key factors in the development of neurodegenerative diseases, yet effective interventions and biomarkers to address oxidative stress and neuroinflammation in these conditions are limited. Uric acid (UA), traditionally associated with gout, is now gaining prominence as a potential target in neurodegenerative diseases. Soluble UA stands out as one of the most vital antioxidant compounds produced by the human body, accounting for up to 55% of the extracellular capacity to neutralize free radicals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!