Tyrosine sulfation is a post-translational modification that enhances protein-protein interactions and may identify druggable sites in the extracellular space. The G protein-coupled receptor CXCR4 is a prototypical example with three potential sulfation sites at positions 7, 12, and 21. Each receptor sulfotyrosine participates in specific contacts with its chemokine ligand in the structure of a soluble, dimeric CXCL12:CXCR4(1-38) complex, but their relative importance for CXCR4 binding and activation by the monomeric chemokine remains undefined. NMR titrations with short sulfopeptides showed that the tyrosine motifs of CXCR4 varied widely in their contributions to CXCL12 binding affinity and site specificity. Whereas the Tyr21 sulfopeptide bound the same site as in previously solved structures, the Tyr7 and Tyr12 sulfopeptides interacted nonspecifically. Surprisingly, the unsulfated Tyr7 peptide occupied a hydrophobic site on the CXCL12 monomer that is inaccessible in the CXCL12 dimer. Functional analysis of CXCR4 mutants validated the relative importance of individual CXCR4 sulfotyrosine modifications (Tyr21 > Tyr12 > Tyr7) for CXCL12 binding and receptor activation. Biophysical measurements also revealed a cooperative relationship between sulfopeptide binding at the Tyr21 site and CXCL12 dimerization, the first example of allosteric behavior in a chemokine. Future ligands that occupy the sTyr21 recognition site may act as both competitive inhibitors of receptor binding and allosteric modulators of chemokine function. Together, our data suggests that sulfation does not ubiquitously enhance complex affinity and that distinct patterns of tyrosine sulfation could encode oligomer selectivity, implying another layer of regulation for chemokine signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3783652PMC
http://dx.doi.org/10.1021/cb400274zDOI Listing

Publication Analysis

Top Keywords

contacts chemokine
8
tyrosine sulfation
8
cxcl12 binding
8
site cxcl12
8
chemokine
6
cxcr4
5
binding
5
cxcl12
5
site
5
sulfopeptide probes
4

Similar Publications

Coronavirus disease 2019 (COVID-19), caused by infection with the enveloped RNA betacoronavirus, SARS-CoV-2, led to a global pandemic involving over 7 million deaths. Macrophage inflammatory responses impact COVID-19 severity; however, it is unclear whether macrophages are infected by SARS-CoV-2. We sought to identify mechanisms regulating macrophage expression of ACE2, the primary receptor for SARS-CoV-2, and to determine if macrophages are susceptible to productive infection.

View Article and Find Full Text PDF

Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm.

Neurochem Int

January 2025

Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China. Electronic address:

The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis.

View Article and Find Full Text PDF

Introduction: Leprosy, a chronic infectious disease, is closely linked to the host immune response. According to the WHO, leprosy patients (L) and household contacts (HHC) are classified into subgroups: paucibacillary (PB) and multibacillary (MB), witch reflect the degree of infection in patients and the level of exposure of their contacts. The main goal of this study was to: i) establish a comprehensive overview of soluble mediator signatures of PBMCs upon antigen-specific stimuli and ii) identify whether the chemokine (CH) and cytokine (CY) signatures were associated with distinct clinical manifestations in (L) and immune response profiles in (HHC).

View Article and Find Full Text PDF

G protein Coupled Receptors (GPCRs) are the largest family of cell surface receptors in humans. Somatic mutations in GPCRs are implicated in cancer progression and metastasis, but mechanisms are poorly understood. Emerging evidence implicates perturbation of intra-receptor activation pathway motifs whereby extracellular signals are transmitted intracellularly.

View Article and Find Full Text PDF

Pararamosis, also known as Pararama-associated phalangeal periarthritis, is a neglected tropical disease primarily affecting rubber tappers in the Amazon region. It is caused by contact with the urticating hairs of the moth caterpillar, which resides in rubber plantations. The condition is marked by the thickening of the articular synovial membrane and cartilage impairment, features associated with chronic synovitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!