Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: To derive and validate a score for the prediction of mid-term bleeding events following discharge for myocardial infarction (MI).
Methods: One thousand and fifty patients admitted for MI and followed for 19.9 ± 6.7 mo were assigned to a derivation cohort. A new risk model, called BLEED-MI, was developed for predicting clinically significant bleeding events during follow-up (primary endpoint) and a composite endpoint of significant hemorrhage plus all-cause mortality (secondary endpoint), incorporating the following variables: age, diabetes mellitus, arterial hypertension, smoking habits, blood urea nitrogen, glomerular filtration rate and hemoglobin at admission, history of stroke, bleeding during hospitalization or previous major bleeding, heart failure during hospitalization and anti-thrombotic therapies prescribed at discharge. The BLEED-MI model was tested for calibration, accuracy and discrimination in the derivation sample and in a new, independent, validation cohort comprising 852 patients admitted at a later date.
Results: The BLEED-MI score showed good calibration in both derivation and validation samples (Hosmer-Lemeshow test P value 0.371 and 0.444, respectively) and high accuracy within each individual patient (Brier score 0.061 and 0.067, respectively). Its discriminative performance in predicting the primary outcome was relatively high (c-statistic of 0.753 ± 0.032 in the derivation cohort and 0.718 ± 0.033 in the validation sample). Incidence of primary/secondary endpoints increased progressively with increasing BLEED-MI scores. In the validation sample, a BLEED-MI score below 2 had a negative predictive value of 98.7% (152/154) for the occurrence of a clinically significant hemorrhagic episode during follow-up and for the composite endpoint of post-discharge hemorrhage plus all-cause mortality. An accurate prediction of bleeding events was shown independently of mortality, as BLEED-MI predicted bleeding with similar efficacy in patients who did not die during follow-up: Area Under the Curve 0.703, Hosmer-Lemeshow test P value 0.547, Brier score 0.060; low-risk (BLEED-MI score 0-3) event rate: 1.2%; intermediate risk (score 4-6) event rate: 5.6%; high risk (score ≥ 7) event rate: 12.5%.
Conclusion: A new bedside prediction-scoring model for post-discharge mid-term bleeding has been derived and preliminarily validated. This is the first score designed to predict mid- term hemorrhagic risk in patients discharged following admission for acute MI. This model should be externally validated in larger cohorts of patients before its potential implementation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691499 | PMC |
http://dx.doi.org/10.4330/wjc.v5.i6.196 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!