Role of cytokines in thymus- versus peripherally derived-regulatory T cell differentiation and function.

Front Immunol

Université Pierre et Marie Curie Univ Paris 06, INSERM U959 , Paris , France ; Centre National de la Recherche Scientifique, UMR 7211 , Paris , France ; Institut National de la Santé et de la Recherche Médicale (INSERM), U959, Immunology-Immunopathology-Immunotherapy (I3) , Paris , France.

Published: June 2013

CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) are essential players in the control of immune responses. Recently, accordingly to their origin, two main subsets of Tregs have been described: thymus-derived Tregs (tTregs) and peripherally derived Tregs (pTregs). Numerous signaling pathways including the IL-2/STAT5 or the TGF-β/Smad3 pathways play a crucial role in segregating the two lineages. Here, we review some of the information existing on the distinct requirements of IL-2, TGF-β, and TNF-α three major cytokines involved in tTreg and pTreg generation, homeostasis and function. Today it is clear that signaling via the IL-2Rβ chain (CD122) common to IL-2 and IL-15 is required for proper differentiation of tTregs and for tTreg and pTreg survival in the periphery. This notion has led to the development of promising therapeutic strategies based on low-dose IL-2 administration to boost the patients' own Treg compartment and dampen autoimmunity and inflammation. Also, solid evidence points to TGF-β as the master regulator of pTreg differentiation and homeostasis. However, therapeutic administration of TGF-β is difficult to implement due to toxicity and safety issues. Knowledge on the role of TNF-α on the biology of Tregs is fragmentary and inconsistent between mice and humans. Moreover, emerging results from the clinical use of TNF-α inhibitors indicate that part of their anti-inflammatory effect may be dependent on their action on Tregs. Given the profusion of clinical trials testing cytokine administration or blocking to modulate inflammatory diseases, a better knowledge of the effects of cytokines on tTregs and pTregs biology is necessary to improve the efficiency of these immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685818PMC
http://dx.doi.org/10.3389/fimmu.2013.00155DOI Listing

Publication Analysis

Top Keywords

ttreg ptreg
8
tregs
6
role cytokines
4
cytokines thymus-
4
thymus- versus
4
versus peripherally
4
peripherally derived-regulatory
4
derived-regulatory cell
4
cell differentiation
4
differentiation function
4

Similar Publications

Regulatory T-cells: The Face-off of the Immune Balance.

Front Biosci (Landmark Ed)

November 2024

Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.

Regulatory T-cells (Tregs) play a crucial role in maintaining immune homeostasis, ensuring a balanced immune response. Tregs primarily operate in an antigen-specific fashion, facilitated by their distinct distribution within discrete niches. Tregs have been studied extensively, from their point of origin in the thymus origin to their fate in the periphery or organs.

View Article and Find Full Text PDF

Alterations of Thymus-Derived Tregs in Multiple Sclerosis.

Neurol Neuroimmunol Neuroinflamm

July 2024

From the Neuroimmunology and MS Research (T.L., W.F., J.R., M.J.D., R.M.), Neurology Clinic, University Hospital Zurich; Division of Immunology (T.L.), University Children's Hospital Zurich, University of Zurich; Cellerys AG (W.F., R.M.), Schlieren, Switzerland; Immunity and Cancer (U932) (W.F.), Immune Response to Cancer Laboratory, Institut Curie, 26 rue d'Ulm, CEDEX 05, Paris, France; Functional Genomics Center Zurich (L.O.), Swiss Federal Institute of Technology and University of Zurich; Institute of Experimental Immunology (R.M.), University of Zurich, Switzerland; and Therapeutic Design Unit (R.M.), Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden.

Background And Objectives: Multiple sclerosis (MS) is considered a prototypic autoimmune disease of the CNS. It is the leading cause of chronic neurologic disability in young adults. Proinflammatory B cells and autoreactive T cells both play important roles in its pathogenesis.

View Article and Find Full Text PDF

Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both?

Mol Cell Pediatr

March 2024

Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.

Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset.

View Article and Find Full Text PDF

The hormonally active vitamin D metabolite, calcitriol, functions as an important modulator of the immune system. We assumed that calcitriol exerts different effects on immune cells and cytokine production, depending on the age of the animal; therefore, we analyzed its effects on regulatory T lymphocytes and regulatory B lymphocytes in healthy young and old female C57Bl/6/Foxp3GFP mice. In the lymph nodes of young mice, calcitriol decreased the percentage of Tregs, including tTregs and pTregs, and the expression of GITR, CD103, and CD101; however, calcitriol increased the level of IL-35 in adipose tissue.

View Article and Find Full Text PDF

Selective ablation of thymic and peripheral Foxp3 regulatory T cell development.

Front Immunol

January 2024

Molecular and Cellular Immunology/Immune Regulation, Center for Regenerative Therapies Dresden (CRTD), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany.

Foxp3 regulatory T (Treg) cells of thymic (tTreg) and peripheral (pTreg) developmental origin are thought to synergistically act to ensure immune homeostasis, with self-reactive tTreg cells primarily constraining autoimmune responses. Here we exploited a Foxp3-dependent reporter with thymus-specific GFP/Cre activity to selectively ablate either tTreg (ΔtTreg) or pTreg (ΔpTreg) cell development, while sparing the respective sister populations. We found that, in contrast to the tTreg cell behavior in ΔpTreg mice, pTreg cells acquired a highly activated suppressor phenotype and replenished the Treg cell pool of ΔtTreg mice on a non-autoimmune C57BL/6 background.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!