Deficits in sleep and circadian organization have been identified as common early features in patients with Huntington's disease that correlate with symptom severity and may be instrumental in disease progression. Studies in Huntington's disease gene carriers suggest that alterations in the electroencephalogram may reflect underlying neuronal dysfunction that is present in the premanifest stage. We conducted a longitudinal characterization of sleep/wake and electroencephalographic activity in the R6/2 mouse model of Huntington's disease to determine whether analogous electroencephalographic 'signatures' could be identified early in disease progression. R6/2 and wild-type mice were implanted for electroencephalographic recordings along with telemetry for the continuous recording of activity and body temperature. Diurnal patterns of activity and core body temperature were progressively disrupted in R6/2 mice, with a large reduction in the amplitude of these rhythms apparent by 13 weeks of age. The diurnal variation in sleep/wake states was gradually attenuated as sleep became more fragmented and total sleep time was reduced relative to wild-type mice. These genotypic differences were augmented at 17 weeks and evident across the entire 24-h period. Quantitative electroencephalogram analysis revealed anomalous increases in high beta and gamma activity (25-60 Hz) in all sleep/wake states in R6/2 mice, along with increases in theta activity during both non-rapid eye movement and rapid eye movement sleep and a reduction of delta power in non-rapid eye movement sleep. These dramatic alterations in quantitative electroencephalographic measures were apparent from our earliest recording (9 weeks), before any major differences in diurnal physiology or sleep/wake behaviour occurred. In addition, the homeostatic response to sleep deprivation was greatly attenuated with disease progression. These findings demonstrate the sensitivity of quantitative electroencephalographic analysis to identify early pathophysiological alterations in the R6/2 model of Huntington's disease and suggest longitudinal studies in other preclinical Huntington's disease models are needed to determine the generality of these observations as a potential adjunct in therapeutic development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/brain/awt132 | DOI Listing |
Cells
January 2025
Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA.
Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.
View Article and Find Full Text PDFCells
December 2024
Neural Dynamics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC 3052, Australia.
Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.
View Article and Find Full Text PDFGenetics
January 2025
Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.
Mismatch repair (MMR) is a highly conserved DNA repair pathway that recognizes mispairs that occur spontaneously during DNA replication and coordinates their repair. In Saccharomyces cerevisiae, Msh2-Msh3 and Msh2-Msh6 initiate MMR by recognizing and binding insertion deletion loops (in/dels) up to ∼ 17 nucleotides (nt.) and base-base mispairs, respectively; the two complexes have overlapping specificity for small (1-2 nt.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
Rare diseases may affect the quality of life of patients and be life-threatening. Therapeutic opportunities are often limited, in part because of the lack of understanding of the molecular mechanisms underlying these diseases. This can be ascribed to the low prevalence of rare diseases and therefore the lower sample sizes available for research.
View Article and Find Full Text PDFNeurodegener Dis Manag
January 2025
Turner Institute for Brain & Mental Health, School of Psychological Sciences, Faculty of Medicine, Nursing & Health Sciences, 18 Innovation Walk, Monash University, Clayton VIC 3800, Australia.
Huntington's disease (HD) causes progressive cognitive decline, with no available treatments. Computerized cognitive training (CCT) has shown efficacy in other populations, but its effects in HD are largely unknown. This pilot study will explore the effects and neural mechanisms of CCT in HD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!