Photochemical cyclobutane dimerization of adjacent thymines generates the major lesion in DNA caused by exposure to sunlight. Not all nucleotide sequences and structures are equally susceptible to this reaction or its potential to create mutations. Photostationary levels of the cyclobutane thymine dimer have now been quantified in homogenous samples of DNA reconstituted into nucleosome core particles to examine the basis for previous observations that such structures could induce a periodicity in dimer yield when libraries of heterogeneous sequences were used. Initial rate studies did not reveal a similar periodicity when a homogenous core particle was analyzed, but this approach examined only formation of this photochemically reversible cyclobutane dimer. Photostationary levels result from competition between dimerization and reversion and, as described in this study, still express none of the periodicity within two alternative core particles that was evident in heterogeneous samples. Such periodicity likely arises from only a limited set of sequences and structural environments that are not present in the homogeneous and well-characterized assemblies available to date.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3pp50147g | DOI Listing |
J Photochem Photobiol B
January 2025
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, SP 09210-580, Brazil.
In this review, we compare the mechanisms and consequences of electronic excitation of DNA via photon absorption or photosensitization, as well as by chemically induced generation of excited states. The absorption of UV radiation by DNA is known to produce cyclobutane pyrimidine dimers (CPDs) and thymine pyrimidone photoproducts. Photosensitizers are known to enable such transformations using UV-A and visible light by generating triplet species able to transfer energy to DNA.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
DNA photolyases use blue light and fully reduced flavin cofactor to repair UV-induced cyclobutane pyrimidine dimers (CPD) formed between two adjacent thymine bases in DNA. Thymine can form [2 + 2] cyclobutane adducts with its biological isosteres like toluene upon UV irradiation, resulting in chemically different analogues of CPD. Here, we investigated the cycloreversion reactions of two such adducts formed between thymine and toluene, T<>Tol, catalyzed by a class-I CPD photolyase.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Chemistry Department, New York University, 31 Washington Place, New York, NY 10003, USA.
The SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5' → 3' direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected lesions include two benzo[]pyrene (B[]P)-derived dG adducts, the UV-induced cyclobutane pyrimidine dimer (CPD), and the pyrimidine (6-4) pyrimidone (6-4PP) photolesion.
View Article and Find Full Text PDFMol Biol (Mosk)
June 2024
Biological Faculty, Moscow State University, Moscow, 119991 Russia.
Photochemical reactions in cell DNA are induced in various organisms by solar UV radiation and may lead to a series of biological responses to DNA damage, including apoptosis, mutagenesis, and carcinogenesis. The chemical nature and the amount of DNA lesions depend on the wavelength of UV radiation. UV type B (UVB, 290-320 nm) causes two main lesions, cyclobutane pyrimidine dimers (CPDs) and, with a lower yield, pyrimidine (6-4) pyrimidone photoproducts (6-4PPs).
View Article and Find Full Text PDFJ Pers Med
May 2024
Department of Internal Medicine II, Division of Nephrology, Victor Babes University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania.
Renal cell carcinoma (RCC) remains incurable in advanced stages. Biomarkers have proven to be quite useful in cancer therapeutics. Herein, we provide a comparative/integrative statistical analysis of seminal immunohistochemistry (IHC) findings for Wilms' Tumor 1 antigen (WT1) and thymine dimers (TDs), emerging as atypical, yet promising, potential biomarkers for RCCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!