Background: Feline Immunodeficiency Virus (FIV) is a viral pathogen that infects domestic cats and wild felids. During the viral replication cycle, the FIV p15 matrix protein oligomerizes to form a closed matrix that underlies the lipidic envelope of the virion. Because of its crucial role in the early and late stages of viral morphogenesis, especially in viral assembly, FIV p15 is an interesting target in the development of potential new therapeutic strategies.

Results: Our biochemical study of FIV p15 revealed that it forms a stable dimer in solution under acidic conditions and at high concentration, unlike other retroviral matrix proteins. We determined the crystal structure of full-length FIV p15 to 2 Å resolution and observed a helical organization of the protein, typical for retroviral matrix proteins. A hydrophobic pocket that could accommodate a myristoyl group was identified, and the C-terminal end of FIV p15, which is mainly unstructured, was visible in electron density maps. As FIV p15 crystallizes in acidic conditions but with one monomer in the asymmetric unit, we searched for the presence of a biological dimer in the crystal. No biological assembly was detected by the PISA server, but the three most buried crystallographic interfaces have interesting features: the first one displays a highly conserved tryptophan acting as a binding platform, the second one is located along a 2-fold symmetry axis and the third one resembles the dimeric interface of EIAV p15. Because the C-terminal end of p15 is involved in two of these three interfaces, we investigated the structure and assembly of a C-terminal-truncated form of p15 lacking 14 residues. The truncated FIV p15 dimerizes in solution at a lower concentration and crystallizes with two molecules in the asymmetric unit. The EIAV-like dimeric interface is the only one to be retained in the new crystal form.

Conclusion: The dimeric form of FIV p15 in solution and its extended C-terminal end are characteristic among lentiviral matrix proteins. Crystallographic interfaces revealed several interactions that might be involved in FIV replication. Further studies are needed to better understand their biological relevance in the function of FIV Gag during viral replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706335PMC
http://dx.doi.org/10.1186/1742-4690-10-64DOI Listing

Publication Analysis

Top Keywords

fiv p15
32
p15
12
matrix proteins
12
fiv
11
crystal structure
8
feline immunodeficiency
8
immunodeficiency virus
8
p15 matrix
8
matrix protein
8
viral replication
8

Similar Publications

Epidemiology of Pathogenic Retroviruses and Domestic Cat Hepadnavirus in Community and Client-Owned Cats in Hong Kong.

Viruses

January 2024

Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China.

Understanding the local epidemiology of feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) in Hong Kong will inform retrovirus prevention strategies. Domestic cat hepadnavirus (DCH), a novel hepatitis-B-like virus, is commonly detected among client-owned cats in Hong Kong, but community cats have not been studied. The aims of this study were to investigate the frequency and potential risk factors for (i) FeLV and FIV among community and client-owned cats and (ii) perform molecular detection of DCH among community cats in Hong Kong.

View Article and Find Full Text PDF

Domestic Cat Hepadnavirus and Pathogenic Retroviruses; A Sero-Molecular Survey of Cats in Santiago, Chile.

Viruses

December 2023

Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong.

Cat ownership is common in Chile, but data on the regional prevalence of infectious agents are limited. A sero-molecular survey of 120 client- or shelter-owned domestic cats in greater Santiago was performed. Whole blood DNA was tested for the novel hepatitis-B-like virus, domestic cat hepadnavirus (DCH) by conventional PCR (cPCR) and quantitative PCR (qPCR), and for feline leukaemia virus (FeLV) by qPCR.

View Article and Find Full Text PDF

Objectives: Our aim was to: (i) determine the current seroprevalence of feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) in three large cohorts of cats from Australia; and (ii) investigate potential risk factors for retroviral infection.

Methods: Cohort 1 (n = 2151 for FIV, n = 2241 for FeLV) consisted of cats surrendered to a shelter on the west coast of Australia (Perth, Western Australia [WA]). Cohort 2 (n = 2083 for FIV, n = 2032 for FeLV) consisted of client-owned cats with outdoor access recruited from around Australia through participating veterinary clinics.

View Article and Find Full Text PDF

Objectives Recently, two point-of-care (PoC) feline immunodeficiency virus (FIV) antibody test kits (Witness and Anigen Rapid) were reported as being able to differentiate FIV-vaccinated from FIV-infected cats at a single time point, irrespective of the gap between testing and last vaccination (0-7 years). The aim of the current study was to investigate systematically anti-FIV antibody production over time in response to the recommended primary FIV vaccination series. Methods First, residual plasma from the original study was tested using a laboratory-based ELISA to determine whether negative results with PoC testing were due to reduced as opposed to absent antibodies to gp40.

View Article and Find Full Text PDF

Background: Feline Immunodeficiency Virus (FIV) is a viral pathogen that infects domestic cats and wild felids. During the viral replication cycle, the FIV p15 matrix protein oligomerizes to form a closed matrix that underlies the lipidic envelope of the virion. Because of its crucial role in the early and late stages of viral morphogenesis, especially in viral assembly, FIV p15 is an interesting target in the development of potential new therapeutic strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!