Specific heat capacity of molten salt-based alumina nanofluid.

Nanoscale Res Lett

Department of Mechanical Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan.

Published: June 2013

There is no consensus on the effect of nanoparticle (NP) addition on the specific heat capacity (SHC) of fluids. In addition, the predictions from the existing model have a large discrepancy from the measured SHCs in nanofluids. We show that the SHC of the molten salt-based alumina nanofluid decreases with reducing particle size and increasing particle concentration. The NP size-dependent SHC is resulted from an augmentation of the nanolayer effect as particle size reduces. A model considering the nanolayer effect which supports the experimental results was proposed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693913PMC
http://dx.doi.org/10.1186/1556-276X-8-292DOI Listing

Publication Analysis

Top Keywords

specific heat
8
heat capacity
8
molten salt-based
8
salt-based alumina
8
alumina nanofluid
8
particle size
8
capacity molten
4
nanofluid consensus
4
consensus nanoparticle
4
nanoparticle addition
4

Similar Publications

Background: Geraniums (Pelargonium) are among the most popular flowers worldwide. Viral infection is one of the main problems of the genus Pelargonium, and the production of virus-free mother plants is necessary for large-scale geranium propagation and exchange. Meristem culture and thermotherapy are two effective procedures that have been widely adopted to produce healthy virus-free plant stocks.

View Article and Find Full Text PDF

Sustainable pavement is essential for country development, offering durable, environmentally friendly, and cost-effective infrastructure. For Malaysia, sustainable pavement supports Sustainable Development Goals (SDGs) 9 and 11 while addressing road deterioration caused by increasing traffic volumes and loads. This deterioration shortens pavement service life and necessitates frequent maintenance, driving the need for innovative solutions.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Ohio State University College of Medicine, Neurobiology of Aging & Resilience Center, Columbus, OH, USA.

Background: The cerebrovasculature is an essential component of brain homeostasis. Cerebrovascular disorders are associated with an increased risk for neurodegenerative diseases, including Alzheimer's disease (AD). However, the mechanisms by which cerebrovascular dysfunction contributes to neurodegeneration are poorly understood.

View Article and Find Full Text PDF

Background: Abnormal brain insulin signaling has been associated with Alzheimer's disease pathology and a faster rate of late-life cognitive decline. However, the underlying mechanisms remain unclear. In this study, we examined whether AD-related cortical proteins identified using targeted-proteomics play a role in the association of brain insulin signaling and cognitive decline.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.

Background: Alzheimer's Disease (AD) presents complex molecular heterogeneity, influenced by a variety of factors including heterogeneous phenotypic, genetic, and neuropathologic presentations. Regulation of gene expression mechanisms is a primary interest of investigations aiming to uncover the underlying disease mechanisms and progression.

Method: We generated bulk RNA-sequencing in prefrontal cortex from 565 AD brain samples (non-Hispanic Whites, n = 399; Hispanics, n = 113; African American, n = 12) across six U.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!