The 20S proteasome core particle is a molecular machine that plays a central role in the regulation of cellular function through proteolysis, and it has emerged as a valuable drug target for certain classes of cancers. Central to the development of new and potent pharmaceuticals is an understanding of the mechanism by which the proteasome cleaves substrates. A number of high-resolution structures of the 20S proteasome with and without inhibitors have emerged that provide insight into the chemistry of peptide bond cleavage and establish the role of Thr1 Oγ1 as the catalytic nucleophile. The source of the base that accepts the Thr1 Hγ1 is less clear. Using a highly deuterated sample of the proteasome labeled with (13)CH3 at the Thr-γ positions, the pKA of the Thr1 amino group has been measured to be 6.3 and hence deprotonated in the range of maximal enzyme activity. This provides strong evidence that the terminal amino group of Thr1 serves as the base in the first step of the peptide bond cleavage reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja403091c | DOI Listing |
Nat Commun
January 2025
Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratorio de Biología de la Reproducción, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1240000, Chile.
Proteasome-mediated protein degradation is essential for maintaining cellular homeostasis, particularly during spermatogenesis, where extensive cellular transformations, such as spermatid differentiation, require precise protein turnover. A key player in this process is the ubiquitin-proteasome system (UPS). This study aimed to investigate proteasome enzymatic activity at different stages of the spermatogenic cycle within the seminiferous tubules of mice and explore the regulatory mechanisms that influence its proteolytic function.
View Article and Find Full Text PDFClin Transl Med
February 2025
Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA.
Background: The goal of precision oncology is to find effective therapeutics for every patient. Through the inclusion of emerging therapeutics in a high-throughput drug screening platform, our functional genomics pipeline inverts the common paradigm to identify patient populations that are likely to benefit from novel therapeutic strategies.
Approach: Utilizing drug screening data across a panel of 46 cancer cell lines from 11 tumor lineages, we identified an ovarian cancer-specific sensitivity to the first-in-class CRL4 inhibitors KH-4-43 and 33-11.
J Agric Food Chem
January 2025
Fruit Biology Laboratory, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
Proteasomes are protein complexes responsible for degrading unneeded or damaged proteins through proteolysis and play critical roles in regulating plant development and response to environmental stresses. However, it is still unclear whether proteasomes regulate fruit development and ripening. In this study, we investigated the function of a core proteasome subunit, SlPBB2, in tomato fruit.
View Article and Find Full Text PDFPLoS Genet
January 2025
National Glycoengineering Research Center, Shandong University, Qingdao, China.
Protein ubiquitination is usually coupled with proteasomal degradation and is crucial in regulating protein quality. The E3 ubiquitin-protein ligase SCF (Skp1-Cullin-F-box) complex directly recognizes the target substrate via interaction between the F-box protein and the substrate. F-box protein is the determinant of substrate specificity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!