Bacterial landscape of human skin: seeing the forest for the trees.

Exp Dermatol

Department of Medical Biosciences/Pathology, Umeå University, Sweden.

Published: July 2013

Skin harbours large communities of colonizing bacteria. The same bacterial species can exist in different physiological states: viable, dormant, non-viable. Each physiological state can have a different impact on skin health and disease. Various analytical methodologies target different physiological states of bacteria, and this must be borne in mind while interpreting microbiological tests and drawing conclusions about possible cause-effect relationships.

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.12160DOI Listing

Publication Analysis

Top Keywords

physiological states
8
bacterial landscape
4
landscape human
4
human skin
4
skin forest
4
forest trees
4
trees skin
4
skin harbours
4
harbours large
4
large communities
4

Similar Publications

In vivo two-photon FLIM resolves photosynthetic properties of maize bundle sheath cells.

Photosynth Res

January 2025

State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.

Maize (Zea mays L.) performs highly efficient C photosynthesis by dividing photosynthetic metabolism between mesophyll and bundle sheath cells. In vivo physiological measurements are indispensable for C photosynthesis research as photosynthetic activities are easily interrupted by leaf section or cell isolation.

View Article and Find Full Text PDF

Polarization is a property of light that describes the oscillation of the electric field vector. Polarized light can be detected by many invertebrate animals, and this visual channel is widely used in nature. Insects rely on light polarization for various purposes, such as water detection, improving contrast, breaking camouflage, navigation, and signaling during mating.

View Article and Find Full Text PDF

Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress.

View Article and Find Full Text PDF

The assumption that people differ in (i.e., the extent to which a person's subjective affective experience matches their affective bodily state) is central to emotional competence.

View Article and Find Full Text PDF

The innate immune system is tightly regulated by a complex network of chemical signals triggered by pathogens, cellular damage, and environmental stimuli. While it is well-established that changes in the extracellular environment can significantly influence the immune response to pathogens and damage-associated molecules, there remains a limited understanding of how changes in environmental stimuli specifically impact the activation of the NLRP3 inflammasome, a key component of innate immunity. Here, we demonstrated how shear stress can act as Signal 2 in the NLRP3 inflammasome activation pathway by treating LPS-primed immortalized bone marrow-derived macrophages (iBMDMs) with several physiologically relevant magnitudes of shear stress to induce inflammasome activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!