The transcriptional regulatory hierarchy that controls development of the Caenorhabditis elegans endoderm begins with the maternally provided SKN-1 transcription factor, which determines the fate of the EMS blastomere of the four-cell embryo. EMS divides to produce the posterior E blastomere (the clonal progenitor of the intestine) and the anterior MS blastomere, a major contributor to mesoderm. This segregation of lineage fates is controlled by an intercellular signal from the neighboring P2 blastomere and centers on the HMG protein POP-1. POP-1 would normally repress the endoderm program in both E and MS but two consequences of the P2-to-EMS signal are that POP-1 is exported from the E-cell nucleus and the remaining POP-1 is converted to an endoderm activator by complexing with SYS-1, a highly diverged β-catenin. In the single E cell, a pair of genes encoding small redundant GATA-type transcription factors, END-1 and END-3, are transcribed under the combined control of SKN-1, the POP-1/SYS-1 complex, as well as the redundant pair of MED-1/2 GATA factors, themselves direct zygotic targets of SKN-1 in the EMS cell. With the expression of END-1/END-3, the endoderm is specified. END-1 and END-3 then activate transcription of a further set of GATA-type transcription factors that drive intestine differentiation and function. One of these factors, ELT-2, appears predominant; a second factor, ELT-7, is partially redundant with ELT-2. The mature intestine expresses several thousand genes, apparently all controlled, at least in part, by cis-acting GATA-type motifs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/wdev.93 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!