Protein-protein interactions are well-known to regulate enzyme activity in cell signaling and metabolism. Here, we show that protein-protein interactions regulate the activity of a respiratory-chain enzyme, CymA, by changing the direction or bias of catalysis. CymA, a member of the widespread NapC/NirT superfamily, is a menaquinol-7 (MQ-7) dehydrogenase that donates electrons to several distinct terminal reductases in the versatile respiratory network of Shewanella oneidensis . We report the incorporation of CymA within solid-supported membranes that mimic the inner membrane architecture of S. oneidensis . Quartz-crystal microbalance with dissipation (QCM-D) resolved the formation of a stable complex between CymA and one of its native redox partners, flavocytochrome c3 (Fcc3) fumarate reductase. Cyclic voltammetry revealed that CymA alone could only reduce MQ-7, while the CymA-Fcc3 complex catalyzed the reaction required to support anaerobic respiration, the oxidation of MQ-7. We propose that MQ-7 oxidation in CymA is limited by electron transfer to the hemes and that complex formation with Fcc3 facilitates the electron-transfer rate along the heme redox chain. These results reveal a yet unexplored mechanism by which bacteria can regulate multibranched respiratory networks through protein-protein interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823026PMC
http://dx.doi.org/10.1021/ja405072zDOI Listing

Publication Analysis

Top Keywords

protein-protein interactions
12
electron transfer
8
cyma
6
protein-protein
4
protein-protein interaction
4
interaction regulates
4
regulates direction
4
direction catalysis
4
catalysis electron
4
transfer redox
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!