Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Magnetic resonance spectroscopy (MRS) experiments rely on a homogeneous and stable magnetic field within the sample. Field homogeneity is typically optimized by static B0 shimming while reproducible effects from dynamic field variation are commonly diminished by means of gradient system calibration as well as calibration based on non-water suppressed reference data. However, residual encoding deficiencies from incomplete calibration and nonreproducible field perturbations deteriorate the quality of the obtained data. To overcome this problem, we propose to adapt higher-order feedback field control based on NMR field probes for its application in MRS.
Methods: To allow for field measurements simultaneously with the spectroscopy readout, radiofrequency-shielded field probes were employed. The setup was evaluated in vitro and tested in vivo for single-voxel MRS at 7T to correct for field perturbations that occur due to subject breathing and limb motion.
Results: The in vitro experiments showed an effective field control during the MRS sequence. The resulting spectroscopy data were free of spurious signal and the achieved field stabilization improved the spectral resolution in vitro and in vivo.
Conclusion: High-field MRS is limited by nonreproducible field perturbations for which spatiotemporal field feedback provides a solution without compromising sequence timing and efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrm.24836 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!