Out of Academics: Education, Entrepreneurship and Enterprise.

Ann Biomed Eng

Joint Department of Biomedical Engineering, Biomedical Engineer ing Department, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27514, USA,

Published: June 2013

The author started a niche biotech company in 1985 called Flexcell to distribute an enabling technology, mechanobiology devices, to the field. He was the first University of North Carolina faculty member to start a company and stay with it as he pursued his career in academics. That was an unpopular route at that time, but a path he was driven to navigate. Those interests, merged with his training, led to the design and manufacture of mechanobiology devices such as the Flexercell Strain Unit and the BioFlex flexible bottom culture plates to study fundamental responses of cells to strain. Principles in these devices were also incorporated into bioreactors for tissue engineering, which are standard in the marketplace today. In this article, the major roadblocks will be chronicled that were overcome to help build the field of mechanobiology and create a small biotechnology company. Through example, the author's formula for achieving milestones will be discussed including, the DRIVE it takes to get there ["DRIVE": Determination (Confidence), Research and Development (R&D) and Risk-Taking, Innovation (Imagination) and Intellectual Property, achieving Victory, and Enterprise].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758506PMC
http://dx.doi.org/10.1007/s10439-013-0839-xDOI Listing

Publication Analysis

Top Keywords

mechanobiology devices
8
academics education
4
education entrepreneurship
4
entrepreneurship enterprise
4
enterprise author
4
author started
4
started niche
4
niche biotech
4
biotech company
4
company 1985
4

Similar Publications

X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.

View Article and Find Full Text PDF

Nanopipettes, as a class of solid-state nanopores, have evolved into universal tools in biomedicine for the detection of biomarkers and different biological analytes. Nanopipette-based methods combine high sensitivity, selectivity, single-molecule resolution, and multifunctionality. The features have significantly expanded interest in their applications for the biomolecular detection, imaging, and molecular diagnostics of real samples.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique, yet it faces challenges with certain probe molecules exhibiting weak or inactive signals, limiting their applicability. In a recent study, we investigated this phenomenon using a set of four probe molecules─chloramphenicol (CAP), 4-nitrophenol (4-NP), amoxicillin (AMX), and furazolidone (FZD)─deposited on Ag-based nanostructured SERS substrates. Despite being measured under identical conditions, CAP and 4-NP exhibited SERS activity, while AMX and FZD did not.

View Article and Find Full Text PDF

MolecularWebXR is a new web-based platform for education, science communication and scientific peer discussion in chemistry and biology, based on modern web-based Virtual Reality (VR) and Augmented Reality (AR). With no installs as it is all web-served, MolecularWebXR enables multiple users to simultaneously explore, communicate and discuss concepts about chemistry and biology in immersive 3D environments, by manipulating and passing around objects with their bare hands and pointing at different elements with natural hand gestures. Users may either be present in the same physical space or distributed around the world, in the latter case talking naturally with each other thanks to built-in audio.

View Article and Find Full Text PDF

Introduction/aims: Skeletal muscle magnetic resonance imaging (MRI) is a validated noninvasive tool to assess Duchenne muscular dystrophy (DMD) progression. There is interest in finding DMD biomarkers that decrease the burden of clinical trial participation, such as wearable devices. Our aim was to evaluate the relationship between activity, via accelerometry, and skeletal muscle MRI, particularly T mapping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!