Antibody and antigen contact residues define epitope and paratope size and structure.

J Immunol

Antibody Discovery Research and Development, SDIX, Inc, Newark, DE 19702, USA.

Published: August 2013

A total of 111 Ag-Ab x-ray crystal structures of large protein Ag epitopes and paratopes were analyzed to inform the process of eliciting or selecting functional and therapeutic Abs. These analyses illustrate that Ab contact residues (CR) are distributed in three prominent CR regions (CRR) on L and H chains that overlap but do not coincide with Ab CDR. The number of Ag and Ab CRs per structure are overlapping and centered around 18 and 19, respectively. The CR span (CRS), a novel measure introduced in this article, is defined as the minimum contiguous amino acid sequence containing all CRs of an Ag or Ab and represents the size of a complete structural epitope or paratope, inclusive of CR and the minimum set of supporting residues required for proper conformation. The most frequent size of epitope CRS is 50-79 aa, which is similar in size to L (60-69) and H chain (70-79) CRS. The size distribution of epitope CRS analyzed in this study ranges from ~20 to 400 aa, similar to the distribution of independent protein domain sizes reported in the literature. Together, the number of CRs and the size of the CRS demonstrate that, on average, complete structural epitopes and paratopes are equal in size to each other and similar in size to intact protein domains. Thus, independent protein domains inclusive of biologically relevant sites represent the fundamental structural unit bound by, and useful for eliciting or selecting, functional and therapeutic Abs.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1203198DOI Listing

Publication Analysis

Top Keywords

contact residues
8
epitope paratope
8
size
8
epitopes paratopes
8
eliciting selecting
8
selecting functional
8
functional therapeutic
8
therapeutic abs
8
crs
8
number crs
8

Similar Publications

Replacement of a single residue changes the primary specificity of thrombin.

Fertil Steril

January 2025

Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA. Electronic address:

Background: Thrombin prefers substrates carrying Arg at the site of cleavage (P1) because of the presence of D189 in the primary specificity (S1) pocket but can also cleave substrates carrying Phe at P1. The structural basis of this property is unknown.

Objective: Solve the X-ray structure of thrombin bound to a ligand carrying Phe at P1 and investigate the effects of replacing D189.

View Article and Find Full Text PDF

Chemical control is currently the main strategy for managing brown marmorated stink bug, Halyomorpha halys (Stål). However, chemical pesticides can harm nontarget species, including natural enemies of H. halys.

View Article and Find Full Text PDF

ARGONAUTE (AGO) proteins bind to small non-coding RNAs to form RNA-induced silencing complexes. In the RNA-bound state, AGO is stable while RNA-free AGO turns over rapidly. Molecular features unique to RNA-free AGO that allow its specific recognition and degradation remain unknown.

View Article and Find Full Text PDF

Stable Antifouling and Antibacterial Coating Based on Assembly of Copper-Phenolic Networks.

ACS Appl Bio Mater

January 2025

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

Biofilm formation on medical devices has become a worldwide issue arising from its resistance to bactericidal agents and presenting challenges to eradicating biofouling adhesion, especially in biological fluids. Metal-phenolic networks have been demonstrated as a versatile and efficient strategy to prevent biofilm formation by endowing medical devices with prolonged antifouling and antibacterial activities in a one-step surface modification. In this study, we report a simple and environmentally friendly method using coordination chemistry between copper ions (Cu) and dopamine-containing copolymer to fabricate metal-phenolic network-based coatings.

View Article and Find Full Text PDF

Due to their inability to biodegrade, petroleum-based plastics pose significant environmental challenges by disrupting aquatic, marine, and terrestrial ecosystems. Additionally, the widespread presence of microplastics and nanoplastics induces serious health risks for humans and animals. These pressing issues create an urgent need for designing and developing eco-friendly, biodegradable, renewable, and non-toxic plastic alternatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!