We investigated the effect of interleukin-1β (IL-1β) on activity of an inwardly rectifying K+ channel in cultured human proximal tubule cells (RPTECs), using the patch-clamp technique and Fura-2 Ca2+ imaging. IL-1β (15 pg/ml) acutely reduced K+ channel activity in cell-attached patches. This effect was blocked by the IL-1 receptor antagonist (20 ng/ml), an inhibitor of phospholipase C, neomycin (300 μM), and an inhibitor of protein kinase C (PKC), GF109203X (500 nM). The Fura-2 Ca2+ imaging revealed that IL-1β increased intracellular Ca2+ concentration even after removal of extracellular Ca2+, which was blocked by an inhibitor of inositol 1,4,5-trisphosphate receptors, 2-aminoethoxydiphenyl borate (2-APB, 1 μM). Moreover, IL-1β suppressed channel activity in the presence of 2-APB without extracellular Ca2+. These results suggest that IL-1β suppresses K+ channel activity in RPTECs through binding to its specific receptor and activation of the PKC pathway even though intracellular Ca2+ does not increase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717820PMC
http://dx.doi.org/10.1007/s12576-013-0275-6DOI Listing

Publication Analysis

Top Keywords

channel activity
12
activity inwardly
8
inwardly rectifying
8
rectifying channel
8
proximal tubule
8
tubule cells
8
fura-2 ca2+
8
ca2+ imaging
8
intracellular ca2+
8
extracellular ca2+
8

Similar Publications

Aims: To study differences in cardiovascular prevention and hypertension management in primary care in men and women, with comparisons between public and privately operated primary health care (PHC).

Methods: We used register data from Region Stockholm on collected prescribed medication and registered diagnoses, to identify patients aged 30 years and above with hypertension. Age-adjusted logistic regression was used to calculate odds ratios (ORs) with 99% confidence intervals (99% CIs) using public PHC centers as referents.

View Article and Find Full Text PDF

Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex.

J Biol Chem

January 2025

Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903. Electronic address:

The mitochondrial Ca uniporter is the Ca channel responsible for mitochondrial Ca uptake. It plays crucial physiological roles in regulating oxidative phosphorylation, intracellular Ca signaling, and cell death. The uniporter contains the pore-forming MCU subunit, the auxiliary EMRE protein, and the regulatory MICU1 subunit, which blocks the MCU pore under resting cellular Ca concentrations.

View Article and Find Full Text PDF

Functional nanoplatform for modulating cellular forces to enhance antitumor immunity via mechanotransduction.

J Control Release

January 2025

Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China. Electronic address:

Immune cells are sensitive to the perception of mechanical stimuli in the tumor microenvironment. Changes in biophysical cues within tumor tissue can alter the force-sensing mechanisms experienced by cells. Mechanical stimuli within the extracellular matrix are transformed into biochemical signals through mechanotransduction.

View Article and Find Full Text PDF

Plants deploy cellular Ca2+ elevation as a signal for environmental stress signaling. Extracellular ATP (eATP) is released into the extracellular matrix when cells are wounded. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), a key legume-type lectin receptor, senses and binds eATP and activates Ca2+ signaling.

View Article and Find Full Text PDF

Plant Compounds Inhibit the Growth of W12 Cervical Precancer Cells Containing Episomal or Integrant HPV DNA; Tanshinone IIA Synergizes with Curcumin in Cervical Cancer Cells.

Viruses

December 2024

Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, HHSC-1518, 701 W. 168th Street, New York, NY 10032, USA.

This study explores the effects of plant compounds on human papillomavirus (HPV)-induced W12 cervical precancer cells and bioelectric signaling. The aim is to identify effective phytochemicals, both individually and in combination, that can prevent and treat HPV infection and HPV associated cervical cancer. Phytochemicals were tested using growth inhibition, combination, gene expression, RT PCR, and molecular docking assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!