The clinical use of a bioartificial liver (BAL) device strongly depends on the development of human liver cell lines. The aim of this study was to establish and assess the potential use of the stable HepG2 cell line expressing human augmenter of liver regeneration (hALR). The cDNA encoding hALR protein was inserted into pcDNA3.1 to generate pcDNA3.1/hALR, following which pcDNA3.1/hALR was transfected to HepG2 to establish a cell line that stably expressed hALR (HepG2 hALR). A total of 800 million HepG2 hALR cells were loaded into laboratory-scale BAL bioreactors and cultured for 4 days, during which time the parameters of hepatocyte-specific function and general metabolism were determined. The cell line that stably expressed human ALR was successfully established. The expression of recombinant hALR was higher in the HepG2 hALR cell line than in the HepG2 cell line based on immunofluorescence and immunoblot assays. In samples removed from the BAL bioreactor on day 4, compared to HepG2 cells, HepG2 hALR cells produced significantly more alpha-fetoprotein (127.3 %; P < 0.05) and urea (128.8 %; P < 0.05) and eliminated more glucose (135.7 %; P < 0.05); the level of human albumin was also higher (117 %) in HepG2 hALR cells, but the difference was not significant (P > 0.05). After 24 h of culture, the mean lidocaine removal rate was 65.1 and 57.3 % in culture supernatants of HepG2 hALR and HepG2 cell lines, respectively (P < 0.01). Based on these results, we conclude that HepG2 hALR cells showed liver-specific functionality when cultured inside the bioreactor and would therefore be a potential cell source for BAL.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13577-013-0068-5DOI Listing

Publication Analysis

Top Keywords

hepg2 halr
28
halr cells
16
hepg2
12
hepg2 cell
12
halr
11
cell
10
human liver
8
liver cell
8
potential cell
8
cell source
8

Similar Publications

The clinical use of a bioartificial liver (BAL) device strongly depends on the development of human liver cell lines. The aim of this study was to establish and assess the potential use of the stable HepG2 cell line expressing human augmenter of liver regeneration (hALR). The cDNA encoding hALR protein was inserted into pcDNA3.

View Article and Find Full Text PDF

[Clinical study on hybrid bioartificial liver supporting system for acute on chronic liver failure patients].

Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi

October 2011

Liver Failure Therapeutic and Research Center, 302 Hospital of PLA, Beijing 100039, China.

Objective: To construct an hybrid bioartificial liver supporting system, and observe its effectiveness and safety on patients with acute on chronic liver failure.

Methods: Hybrid bioartificial liver supporting system (HBALSS) was constructed using bioreactor with HepG2 cells transfected with human augmenter of liver regeneration (hALR) gene. 12 acute on chronic liver failure patients were divided into 2 groups randomly.

View Article and Find Full Text PDF

Effects of the augmenter of liver regeneration on the biological behavior of hepatocellular carcinoma.

Saudi Med J

August 2009

Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Chongqing University of Medical Sciences, Chongqing, China.

Objective: To take advantage of the small interfering ribonucleic acid (siRNA) targeting the human augmenter of liver regeneration (hALR) and anti-hALR monoclonal antibody (McAb) to inhibit the function of hALR, and to demonstrate whether the growth of hepatoma is influenced by siRNA targeting hALR and anti-hALR McAb through inhibiting expression of hALR.

Methods: This study was conducted in the Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Chongqing Medical University, China, between January 2005 and May 2007. We transfected siRNA plasmid pSIALR-A, which targeted the complementary deoxyribonucleic acid (cDNA) of hALR and the unrelated control plasmid pSIALR-B into human hepatocellular liver carcinoma cell line (HepG2) cells.

View Article and Find Full Text PDF

To gain new insight into the biological function of the human augmenter of liver regeneration (hALR) in HCC, we studied its involvement in radiation-induced damage and recovery of HCC cells. We found that hALR expression was up-regulated in both HCC tissues and multiple hepatoma cell lines and correlated significantly with increased radiation clonogenic survival after radiation treatment. Exogenous expression of hALR increased radiation resistance in SMMC-7721 cells, and the increased survival was accompanied by a decrease in apoptosis and a prolonged G(2)-M arrest after irradiation.

View Article and Find Full Text PDF

Aim: To construct the expression vectors for prokaryotic and eukaryotic human augmenter of liver regeneration (hALR) and to study their biological activity.

Methods: hALRcDNA clone was obtained from plasmid pGEM-T-hALR, and cDNA was subcloned into the prokatyotic expression vector pGEX-4T-2. The recombinant vector and pGEX-4T-2hALR were identified by enzyme digestion and DNA sequencing and transformed into E coli JM109.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!