A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 980
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3077
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unsupervised segmentation, clustering, and groupwise registration of heterogeneous populations of brain MR images. | LitMetric

Population analysis of brain morphology from magnetic resonance images contributes to the study and understanding of neurological diseases. Such analysis typically involves segmentation of a large set of images and comparisons of these segmentations between relevant subgroups of images (e.g., "normal" versus "diseased"). The images of each subgroup are usually selected in advance in a supervised way based on clinical knowledge. Their segmentations are typically guided by one or more available atlases, assumed to be suitable for the images at hand. We present a data-driven probabilistic framework that simultaneously performs atlas-guided segmentation of a heterogeneous set of brain MR images and clusters the images in homogeneous subgroups, while constructing separate probabilistic atlases for each cluster to guide the segmentation. The main benefits of integrating segmentation, clustering and atlas construction in a single framework are that: 1) our method can handle images of a heterogeneous group of subjects and automatically identifies homogeneous subgroups in an unsupervised way with minimal prior knowledge, 2) the subgroups are formed by automatical detection of the relevant morphological features based on the segmentation, 3) the atlases used by our method are constructed from the images themselves and optimally adapted for guiding the segmentation of each subgroup, and 4) the probabilistic atlases represent the morphological pattern that is specific for each subgroup and expose the groupwise differences between different subgroups. We demonstrate the feasibility of the proposed framework and evaluate its performance with respect to image segmentation, clustering and atlas construction on simulated and real data sets including the publicly available BrainWeb and ADNI data. It is shown that combined segmentation and atlas construction leads to improved segmentation accuracy. Furthermore, it is demonstrated that the clusters generated by our unsupervised framework largely coincide with the clinically determined subgroups in case of disease-specific differences in brain morphology and that the differences between the cluster-specific atlases are in agreement with the expected disease-specific patterns, indicating that our method is capable of detecting the different modes in a population. Our method can thus be seen as a comprehensive image-driven population analysis framework that can contribute to the detection of novel subgroups and distinctive image features, potentially leading to new insights in the brain development and disease.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2013.2270114DOI Listing

Publication Analysis

Top Keywords

segmentation clustering
12
atlas construction
12
images
10
segmentation
9
brain images
8
population analysis
8
brain morphology
8
homogeneous subgroups
8
probabilistic atlases
8
clustering atlas
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!