An easy-to-use, rapid, robust and inexpensive technique termed ultrasonic-assisted drop-to-drop solvent microextraction (USA-DDSME) in a capillary tube was used to extract trace phthalate esters in the dipping solution of plastic samples, followed by determination by using gas chromatography-flame ionization detection. Extraction conditions were optimized, including type and volume of extraction solvent, sample volume, extraction time and effect of salt concentration. The method showing the best extraction performance was used to obtain optimized conditions: 20 µL of solution sample; extraction solvent, 5.00 µL of dichloromethane; segments of extraction phase, five equal divisions; extraction time, 10 min; no added salt. The linearity of the method was determined by analyzing spiked water samples over a concentration range of 0.1-300 µg/L. All calibration curves were found to be linear, with correlation coefficients > 0.9965. The limit of detection was 0.02 µg/L. The recovery values were in the range of 68.91 to 124.8% and relative standard deviations were not higher than 14.2%. Thus, the USA-DDSME method is suitable for the extraction of trace phthalate esters in complicated samples.

Download full-text PDF

Source
http://dx.doi.org/10.1093/chromsci/bmt083DOI Listing

Publication Analysis

Top Keywords

phthalate esters
12
ultrasonic-assisted drop-to-drop
8
drop-to-drop solvent
8
solvent microextraction
8
capillary tube
8
trace phthalate
8
extraction
8
volume extraction
8
extraction solvent
8
extraction time
8

Similar Publications

Background: Health risks associated with phthalate esters depend on exposure level, individual sensitivities, and other contributing factors.

Purpose: This study employed artificial intelligence algorithms while applying data mining techniques to identify correlations between phthalate esters [di(2-ethylhexyl) phthalate, DEHP], lifestyle factors, and disease outcomes.

Methods: We conducted exploratory analysis using demographic and laboratory data collected from the Taiwan Biobank.

View Article and Find Full Text PDF

The objective of this study was to produce new and renewable bio-based plasticizers from used soybean cooking oil (USCO). First, USCO was completely converted into free fatty acids (FFAs) using lipase from Candida rugosa. Next, these FFAs were enzymatically esterified with benzyl alcohol in solvent-free systems.

View Article and Find Full Text PDF

Removal of phthalate esters by integrated adsorption and biodegradation using improved performance of lipase@MOFs.

Environ Pollut

December 2024

Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China. Electronic address:

Phthalate esters (PAEs) are broadly utilized as plasticizers in industrial products, posing a significant threat to ecological security and human health. Lipase is a kind of green biocatalyst with the ability to degrade PAEs, but its application is limited due to its low stability and poor reusability. Herein, lipase from Candida rugosa (CRL) was immobilized into an organic ligand replacement MOFs (MAF-507) and cysteine modification and glutaraldehyde cross-linking were simultaneously performed to synthesize immobilized lipase (Cys-CRL@GA@MAF-507) using a one-pot method.

View Article and Find Full Text PDF

Biodegradation of plasticizers by novel strains of bacteria isolated from plastic waste near Juhu Beach, Mumbai, India.

Sci Rep

December 2024

Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.

Phthalic acid esters are pivotal plasticizers in various applications, including cosmetics, packaging materials, and medical devices. They have garnered significant attention from the scientific community due to their persistence in ecosystems. The multifaceted aspects of PAEs, encompassing leaching, transformation, and toxicity, underscore their prominence as primary components of anthropogenic waste.

View Article and Find Full Text PDF

This study introduces a green approach to sample preparation by applying natural deep eutectic solvents (NADES) to determine phthalates in carbonated soft drinks using high-performance liquid chromatography with diode array detector (HPLC-DAD). The method employs hollow fiber-microporous membrane liquid-liquid microextraction combined with a 96-well plate system, utilizing fatty-acid-based DES in the pores of the membranes. This methodology substantially reduces the use of organic solvents, and its efficiency is comparable to or better than conventional methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!