Chilling is one of the most serious environmental stresses that disrupt the metabolic balance of cells and enhance the production of reactive oxygen species (ROS). Lutein plays important roles in dissipating excess excitation energy and eliminating ROS to maintain the normal physiological function of cells. A tomato carotenoid epsilon-ring hydroxylase gene (LeLUT1) was isolated, and the LeLUT1-GFP fusion protein was localized in the chloroplast of Arabidopsis mesophyll protoplast. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the expression of LeLUT1 was the highest in the leaves and was down-regulated by various abiotic stresses in tomato. The transgenic tobacco plants overexpressing LeLUT1 had higher lutein content, which was decreased in cold condition. Under chilling stress, the non-photochemical quenching (NPQ) values were higher in the transgenic plants than in the wild type (WT) plants. Compared with the WT plants, the transgenic plants showed lower levels of hydrogen peroxide (H2O2), superoxide radical (O2(·-)), relative electrical conductivity, and malondialdehyde content (MDA), and relatively higher values of maximal photochemical efficiency of photosystem II (Fv/Fm), oxidizable P700 of PSI, and net photosynthetic rate (Pn). Therefore, the transgenic seedlings were less suppressed in growth and lost less cotyledon chlorophyll than the WT seedlings. These results suggested that the overexpression of LeLUT1 had a key function in alleviating photoinhibition and photooxidation, and decreased the sensitivity of photosynthesis to chilling stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2013.05.035 | DOI Listing |
Plant Physiol Biochem
January 2025
Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.
Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.
Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.
Genes (Basel)
December 2024
Rice Research Institute, Yunnan Agricultural University, Kunming 650201, China.
Background/objectives: Cold stress is the main environmental factor that affects the growth and development of rice, leading to a decrease in its yield and quality. However, the molecular mechanism of rice's low-temperature resistance remains incompletely understood.
Methods: In this study, we conducted a joint analysis of miRNA and mRNA expression profiles in the cold-resistant material Yongning red rice and the cold-sensitive material B3 using high-throughput sequencing.
Antioxidants (Basel)
January 2025
State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.
Plants have evolved complex mechanisms to cope with diverse abiotic stresses, with the phenylpropanoid pathway playing a central role in stress adaptation. This pathway produces an array of secondary metabolites, particularly polyphenols, which serve multiple functions in plant growth, development, regulating cellular processes, and stress responses. Recent advances in understanding the molecular mechanisms underlying phenylpropanoid metabolism have revealed complex regulatory networks involving MYB transcription factors as master regulators and their interactions with stress signaling pathways.
View Article and Find Full Text PDFCells
January 2025
Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang 453003, China.
Cold stress strongly hinders plant growth and development. However, the molecular and physiological adaptive mechanisms of cold stress tolerance in plants are not well understood. Plants adopt several morpho-physiological changes to withstand cold stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!