The incidence of olfactory perceptual dysfunction increases substantially with aging. Putative mechanisms for olfactory sensory loss are surfacing, including neuroanatomical modifications within brain regions responsible for odor information processing. The islands of Calleja (IC) are dense cell clusters localized within the olfactory tubercle, a cortical structure receiving monosynaptic input from the olfactory bulb. The IC are hypothesized to be important for intra- and extra-olfactory tubercle information processing, and thus olfaction. However, whether the anatomy of the IC are affected throughout normal aging remains unclear. By examining the IC of C57bl/6 mice throughout adulthood and early aging (4-18 months of age), we found that the number of IC decreases significantly with aging. Stereological analysis revealed that the remaining IC in 18-month-old mice were significantly reduced in estimated volume compared with those in 4- month-old mice. We additionally found that whereas young adults (4 months of age) possess greater numbers of IC within the posterior parts of the olfactory tubercle, by 18 months of age, a greater percentage of IC are found within the anterior-most part of the olfactory tubercle, perhaps providing a substrate for the differential access of the IC to odor information throughout aging. These results show that the IC are highly plastic components of the olfactory cortex, changing in volume, localization, and even number throughout normal aging. We predict that modifications among the IC throughout aging and age-related neurodegenerative disorders might be a novel contributor to pathological changes in olfactory cortex function and olfactory perception.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2013.05.014 | DOI Listing |
Commun Biol
December 2024
Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan.
While olfactory behaviors are influenced by neuromodulatory signals, the underlying mechanism remains unknown. The olfactory tubercle (OT), a component of the olfactory cortex and ventral striatum, consists of anteromedial (am) and lateral (l) domains regulating odor-guided attractive and aversive behaviors, respectively, in which the amOT highly expresses various receptors for feeding-regulated neuromodulators. Here we show functions of appetite-stimulating orexin-1 receptor (OxR1) signaling in the amOT.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
December 2024
Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
Purpose: This study aimed to investigate the correlation between subcortical tau-positron emission tomography (Tau-PET) and plasma glial fibrillary acidic protein (GFAP) levels and cognitive function in participants with cognitively unimpaired (CU), mild cognitive impairment (MCI) and Alzheimer's disease (AD) conditions.
Methods: 105 participants with amyloid (Aβ) PET and Tau-PET scans were enrolled. Region of interest (ROI) level and voxel-wise comparisons were performed between those three groups.
Hum Brain Mapp
December 2024
Department of Psychology, Stockholm University, Stockholm, Sweden.
The human brain is organized as a hierarchical global network. Functional connectivity research reveals that sensory cortices are connected to corresponding association cortices via a series of intermediate nodes linked by synchronous neural activity. These sensory pathways and relay stations converge onto central cortical hubs such as the default-mode network (DMN).
View Article and Find Full Text PDFFront Neural Circuits
November 2024
Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan.
Cogn Neurodyn
October 2024
School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, 710062 People's Republic of China.
This work aims to explore the control effect of DBS on Alzheimer's disease (AD) from a neurocomputational perspective. Firstly, a data-driven cortical network model is constructed using the Diffusion Tensor Imaging data. Then, a typical electrophysiological feature of EEG slowing in AD is reproduced by reducing the synaptic connectivity parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!