A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

4-Dimethylaminopyridine promoted interfacial polymerization between hyperbranched polyesteramide and trimesoyl chloride for preparing ultralow-pressure reverse osmosis composite membrane. | LitMetric

4-Dimethylaminopyridine promoted interfacial polymerization between hyperbranched polyesteramide and trimesoyl chloride for preparing ultralow-pressure reverse osmosis composite membrane.

ACS Appl Mater Interfaces

Engineering Research Center of Membrane and Water Treatment Technology of MOE, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.

Published: July 2013

We have presented a concept of ultralow-pressure reverse osmosis membrane based on hyperbranched polyesteramide through interfacial reaction promoted by pyridine derivate. In this strategy, a key catalyst of 4-dimethylaminopyridine, which can both eliminate the steric hindrance of acyl transfer reaction and facilitate the phase transfer in interfacial polymerization, is adopted to drive the formation of a thin film composite membrane from the hyperbranched polyesteramide and trimesoyl chloride. The results of the characterization demonstrate that a dense, rough, and hydrophilic active layer with a thickness of about 100 nm is formed when the 4-dimethylaminopyridine catalyst is used. The salt rejections for Na2SO4, NaCl, and MgSO4 of the as-prepared composite membrane are higher than 92%, especially for Na2SO4 with 98% rejection. The water fluxes reach about 30-40 L·m(-2)·h(-1) even at an operation pressure of 0.6 MPa. The membrane exhibits good chlorine-resistance ability but poor resistance abilities to acidic and alkaline solutions in the physical-chemical stability experiment. It is also found that the resultant membrane possesses excellent separation performance for PEG-200, showing a promising way to separate small organic molecules from water.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am401345yDOI Listing

Publication Analysis

Top Keywords

hyperbranched polyesteramide
12
composite membrane
12
interfacial polymerization
8
polyesteramide trimesoyl
8
trimesoyl chloride
8
ultralow-pressure reverse
8
reverse osmosis
8
membrane
6
4-dimethylaminopyridine promoted
4
promoted interfacial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!