Protein kinases are key regulators of cellular processes, and aberrant function is often associated with human disease. Consequently, kinases represent an important class of therapeutic targets and about 20 kinase inhibitors (KIs) are in clinical use today. Detailed knowledge about the selectivity of KIs is important for the correct interpretation of their pharmacological and systems biological effects. Chemical proteomic approaches for systematic kinase inhibitor selectivity profiling have emerged as important molecular tools in this regard, but the coverage of the human kinome is still incomplete. Here, we describe a new affinity probe targeting Akt and many other members of the AGC kinase family that considerably extends the scope of KI profiling by chemical proteomics. In combination with the previously published kinobeads, the synthesized probe was applied to selectivity profiling of the Akt inhibitors GSK690693 and GSK2141795 in human cancer cells. The results confirmed the inhibition of all Akt isoforms and of a number of known as well as CDC42BPB as a novel putative target for GSK690693. This work also established, for the first time, the kinase selectivity profile of the clinical phase I drug GSK2141795 and identified PRKG1 as a low nanomolar kinase target as well as the ATP-dependent 5'-3' DNA helicase ERCC2 as a potential new non-kinase off-target.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr400455j | DOI Listing |
Anal Bioanal Chem
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
Chloramphenicol (CAP) is widely used in treating bacteria infection in animals and humans. However, the accumulation of CAP in food and environment caused serious health risk to human. Consequently, sensitive and selective detection of CAP is of great importance in environmental monitoring and food safety.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
School of Chemistry, Advanced Research Centre, University of Glasgow 11 Chapel Lane Glasgow G11 6EW UK
Peptide stapling is an effective strategy to stabilise α-helical peptides, enhancing their bioactive conformation and improving physiochemical properties. In this study, we apply our novel diyne-girder stapling approach to the MDM2/MDMX α-helical binding region of the p53 transactivation domain. By incorporation of an unnatural amino acid to create an optimal , + 7 bridge length, we developed a highly α-helical stapled peptide, 4, confirmed circular dichroism.
View Article and Find Full Text PDFIran J Pharm Res
September 2024
Department of Anatomy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, The People's Republic of China.
Background: High mobility group box 1 (HMGB1) plays an essential role in various pathological conditions, including inflammation, fibrosis, autoimmune diseases, and carcinogenesis. The quantification of HMGB1 in body fluids holds promise for clinical applications.
Objectives: This study aimed to isolate high-affinity single-stranded DNA (ssDNA) aptamers that target HMGB1.
Eur J Med Chem
January 2025
Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, China. Electronic address:
Cyclin-dependent kinase 4/6 (CDK4/6) plays a crucial role in cell cycle regulation, is overexpressed in various cancers and is an important target in the development of radiotracers for tumour imaging. Despite the increasing recognition of CDK4/6 inhibitors in cancer therapy, their application is limited by the lack of suitable biomarkers. Herein, we developed a series of technetium-99m-labelled CDK4/6 radiotracers and utilized a linker optimization strategy to reduce their abdominal uptake and enhance their imaging properties.
View Article and Find Full Text PDFBMC Chem
January 2025
Department of Biochemistry, University of Johannesburg, Auckland Park Campus, Cnr Kingsway Avenue and University Road, Auckland, Park, PO Box 524, Johannesburg, 2006, South Africa.
Malaria is the extensive health concern in sub-Saharan Africa, with Plasmodium falciparum being the most lethal strain. The continued emergence of drug-resistant P. falciparum advocates for the development of new antimalarials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!