Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Ulcerative colitis (UC) is a widely studied inflammatory disease associated with differential expression of genes involved in immune function, wound healing, and tissue remodeling. MicroRNAs have been reported to play a role in various cancer types. However, the mechanism of how microRNAs regulate UC remains unclear.
Methods: In the present study, we investigated the role of miR-19a and tumor necrosis factor (TNF)-α in human colon tissues with UC and dextran sodium sulfate (DSS)-induced experimental colitis.
Results: We identified that the expression of miR-19a was significantly reduced and TNF-α was remarkably increased in human colon tissue with UC. Moreover, this observation of miR-19a and TNF-α was also occurred in DSS-treated mice colitis. Further, we observed that miR-19a directly regulated TNF-α expression because miR-19a can suppress the expression of wild-type TNF-α reporter, but not the mutant form. The expression of inflammatory factors TNF-α, IL-8, and GM-GSF were significantly elevated upon application of miR-19a inhibitor.
Conclusion: Taken together, this study determines the levels of miR-19a and TNF-α in both DSS-induced experimental murine colitis and human UC and further demonstrates that miR-19a might directly regulate TNF-α. The findings may provide a new insight in the clinical treatment of UC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/00365521.2013.800991 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!