Objectives: Recent data suggest that induced hypothermia has some protective effects on experimental lung injury. We aimed to evaluate the protective effect of mild hypothermia in a rat model of lipopolysaccharide (LPS) induced neonatal lung injury.

Methods: Wistar rat pups were divided into four groups, specifically: (i) A control group, with no LPS administration and maintained in room air; (ii) A LPS group, with antenatal LPS administrated and maintained in room air; (iii) A LPS + hypothermia group, with antenatal LPS administrated and exposed to hypothermia; (iv) A hypothermia group, with no LPS administration and exposed to hypothermia. Intraperitoneal LPS was injected into maternal rats at the 19th and 20th gestational days to establish a neonatal lung injury model. Mild hypothermia was started at the postnatal 24th hour and continued during 24 h. At the postnatal 7th day, the rats were sacrificed and lung samples were evaluated for immunohistochemical tests and proinflammatory gene expression levels.

Results: Hypothermia therapy attenuated the damaging effects of antenatal LPS administration. Furthermore, hypothermia therapy reduced gene expression of pro-inflammatory cytokines (IL-6, IL-1α, IL-1β, TNF-α) and induced the expression of a potent anti-inflammatory cytokine (IL-10).

Conclusion: The results of this study indicated that mild hypothermia therapy is effective in an LPS induced neonatal lung injury model. If these results are supported by further studies, hypothermia may also be a new therapy option for preventing bronchopulmonary dysplasia.

Download full-text PDF

Source
http://dx.doi.org/10.3109/14767058.2013.818115DOI Listing

Publication Analysis

Top Keywords

lung injury
16
hypothermia therapy
16
mild hypothermia
12
neonatal lung
12
lps administration
12
antenatal lps
12
hypothermia
11
lps
10
induced hypothermia
8
lps induced
8

Similar Publications

Background: Acute lung injury (ALI) significantly impacts the survival rates in intensive care units (ICU). Releasing a lot of pro-inflammatory mediators during the progression of the disease is a core feature of ALI, which may lead to uncontrolled inflammation and further damages the tissues and organs of patients. This study explores the potential therapeutic mechanisms of Dexmedetomidine (Dex) in ALI.

View Article and Find Full Text PDF

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common critical illness. Supportive therapy is still the main strategy for ALI/ARDS. Macrophages are the predominant immune cells in the lungs and play a pivotal role in maintaining homeostasis, regulating metabolism, and facilitating tissue repair.

View Article and Find Full Text PDF

Docetaxel is a chemotherapeutic agent commonly used against breast cancer, nonsmall cell lung cancer, gastric, prostate, head and neck cancer. Docetaxel- or taxane-induced interstitial lung disease (ILD) remains a relatively rare reported adverse event. Although rare, this complication remains an important event to identify and it carries a high mortality.

View Article and Find Full Text PDF

Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.

Chin J Traumatol

December 2024

Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China. Electronic address:

Purpose: To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.

Methods: This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method.

View Article and Find Full Text PDF

Podocyte injury is a major biomarker of primary glomerular disease that leads to massive proteinuria and kidney failure. Ginsenoside Rk1, a substance derived from ginseng, has several pharmacological activities, such as anti-apoptotic, anti-inflammatory, and antioxidant effects. In this study, our goal is to investigate the roles and mechanisms of ginsenoside Rk1 in podocyte injury and acute kidney injury (AKI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!