Silicon has been widely explored as an anode material for lithium ion battery. Upon lithiation, silicon transforms to amorphous LixSi (a-LixSi) via electrochemical-driven solid-state amorphization. With increasing lithium concentration, a-LixSi transforms to crystalline Li15Si4 (c-Li15Si4). The mechanism of this crystallization process is not known. In this paper, we report the fundamental characteristics of the phase transition of a-LixSi to c-Li15Si4 using in situ scanning transmission electron microscopy, electron energy loss spectroscopy, and density function theory (DFT) calculation. We find that when the lithium concentration in a-LixSi reaches a critical value of x = 3.75, the a-Li3.75Si spontaneously and congruently transforms to c-Li15Si4 by a process that is solely controlled by the lithium concentration in the a-LixSi, involving neither large-scale atomic migration nor phase separation. DFT calculations indicate that c-Li15Si4 formation is favored over other possible crystalline phases due to the similarity in electronic structure with a-Li3.75Si.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nn402349j | DOI Listing |
F1000Res
January 2025
Departments of Psychiatry, Neurology, Radiology, and Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
Reddy and Reddy (2014) discuss the optimal timing for lithium levels in patients taking once-daily extended-release lithium formulations. They argue for blood sampling 24 h after the previous dose rather than the standard 12 h. I interpret the data quite differently.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
Lithium-ion battery cathodes are manufactured by coating slurries, liquid suspensions that typically include carbon black (CB), active material, and polymer binder. These slurries have a yield stress and complex rheology due to CB's microstructural response to flow. While optimizing the formulation and processing of slurries is critical to manufacturing defect-free and high-performance cathodes, engineering the shear rheology of cathode slurries remains challenging.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China. Electronic address:
Conjugative transfer, a pivotal mechanism in the transmission of antimicrobial resistance genes, is susceptible to various environmental pollutants. As an emerging contaminant, lithium (Li) has garnered much attention due to its extensive applications. This research investigated the effects of Li on conjugative transfer process, examining biochemical and omics perspectives.
View Article and Find Full Text PDFPeerJ
January 2025
Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America.
The mechanisms that regulate minor and trace element biomineralization in the echinoid skeleton can be primarily controlled biologically (, by the organism and its vital effects) or by extrinsic environmental factors. Assessing the relative role of those controls is essential for understanding echinoid biomineralization, taphonomy, diagenesis, and their potential as geochemical archives. In this study, we (1) contrast geochemical signatures of specimens collected across multiple taxa and environmental settings to assess the effects of environmental and physiological factors on skeletal biomineralogy; and (2) analyze the nanomechanical properties of the echinoid skeleton to assess potential linkages between magnesium/calcium (Mg/Ca) ratios and skeletal nanohardness.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, School of Chemical Engineering and Technology, CHINA.
The poor safety performance of high energy density lithium ion batteries (LIBs) is drawing increasing public concern. To enhance the safety performance on the battery level, it is indispensable to design safe electrolytes that are both non-flammable and low exothermic under abusive conditions. By rational design, a safe localize high concentration electrolyte (LHCE) with non-flammability and extremely low exothermicity is formulated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!