Simulation study of ion pairing in concentrated aqueous salt solutions with a polarizable force field.

Faraday Discuss

Department of Biochemistry and Molecular Biology, The University of Chicago, Gordon Center for Integrative Science, 929 East 57th Street, Chicago, Illinois 60637, USA.

Published: July 2013

The accuracy of empirical force fields is critical for meaningful molecular dynamics simulations of concentrated ionic solutions. Current models are typically developed on the basis of single ion properties such as the monohydrate energy in the gas phase, or the absolute hydration free energy at infinite dilution. However, the failure of these models to represent accurately the properties of concentrated solutions cannot be excluded. Here, these issues are illustrated for a polarizable potential based on classical Drude oscillators. To model accurately concentrated ionic solutions, the parameters of the potential functions are optimized to reproduce osmotic pressure data. The sodium-chloride potential of mean force in solution calculated from the empirically-adjusted model is consistent with the results from that calculated from ab initio CPMD simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3695446PMC
http://dx.doi.org/10.1039/c2fd20068fDOI Listing

Publication Analysis

Top Keywords

concentrated ionic
8
ionic solutions
8
simulation study
4
study ion
4
ion pairing
4
concentrated
4
pairing concentrated
4
concentrated aqueous
4
aqueous salt
4
solutions
4

Similar Publications

Aqueous Solubility of Sodium and Chloride Salts of Glycine─"Uncommon" Common-Ion Effects of Self-Titrating Solids.

Mol Pharm

January 2025

Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States.

Although glycine is the simplest of the amino acids, its solution and solid-state properties are far from straightforward. The aqueous solubility of glycine plays an important role in various applications, including nutrition, food products, biodegradable plastics, and drug development. There is evidence that glycine in subsaturated pH 3-8 solutions forms a dimer, as suggested by several techniques.

View Article and Find Full Text PDF

We present a strategy for enhancing Li conduction in block copolymer electrolytes by introducing trace amounts of Li salts into polystyrene--poly(ethylene oxide) (PS--PEO), wherein Li ions preferentially coordinate with the -OH end groups of the PEO chains, resulting in the formation of double primitive cubic (3̅) structures. Compared with TFSI anions in Li salts, smaller anions (PF and BF) could facilitate ion localization more effectively, expanding the salt concentration range for developing stable 3̅ structures. The 3̅ structures formed in PS--PEOs doped with LiBF at = 0.

View Article and Find Full Text PDF

The adsorption and aggregation of amphiphiles at different solvent interfaces are of great scientific and technological importance. In this study, interfacial tension measurements of surface-active compounds-ionic liquid 2-dodecyl-2,2dimethylethanolammonium bromide (12Cho.Br) and cationic surfactant cetyltrimethylammonium bromide (CTAB)-were conducted both in the absence and presence of ciprofloxacin (CIP).

View Article and Find Full Text PDF

Anisotropic Nanofluidic Ionic Skin for Pressure-Independent Thermosensing.

ACS Nano

January 2025

College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China.

Ionic skin can mimic human skin to sense both temperature and pressure simultaneously. However, a significant challenge remains in creating precise ionic skins resistant to external stimuli interference when subjected to pressure. In this study, we present an innovative approach to address this challenge by introducing a highly anisotropic nanofluidic ionic skin (ANIS) composed of carboxylated cellulose nanofibril (CNF)-reinforced poly(vinyl alcohol) (PVA) nanofibrillar network achieved through a straightforward one-step hot drawing method.

View Article and Find Full Text PDF

Acetonitrile-Based Highly Concentrated Electrolytes for High-Power Organic Sodium-Ion Batteries.

ACS Appl Mater Interfaces

January 2025

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.

Sodium croconate, a high-voltage organic cathode material, can be applied to high-energy-density and cost-effective organic sodium-ion batteries (OSIBs) as an alternative to traditional lithium-ion batteries. However, organic molecular cathodes generally dissolve into the electrolyte, leading to poor cyclability. Thus, an electrolyte that can address the present limitations and further facilitate the fabrication of highly reversible OSIBs must be developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!