In the title compound, C20H18ClN5S, the toluene and triazole rings are oriented almost perpendicular to each other, making a dihedral angle of 89.97 (9)°, whereas the dihedral angle between cholorophenyl and pyrazole rings is 54.57 (11)°. In the crystal, pairs of N-H⋯N hydrogen bonds link the mol-ecules into inversion dimers. Weaker C-H⋯S and C-H⋯Cl inter-actions are also present.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685083PMC
http://dx.doi.org/10.1107/S1600536813013494DOI Listing

Publication Analysis

Top Keywords

dihedral angle
8
3-{[5-4-chloro-phen-yl-3-methyl-1h-pyrazol-1-yl]meth-yl}-4-m-tolyl-1h-124-triazole-54h-thione title
4
title compound
4
compound c20h18cln5s
4
c20h18cln5s toluene
4
toluene triazole
4
triazole rings
4
rings oriented
4
oriented perpendicular
4
perpendicular making
4

Similar Publications

A Coarse-Grained Simulation Approach for Protein Molecular Conformation Dynamics.

J Phys Chem A

January 2025

Computer Modelling Group, 3710 33 St NW, Calgary, Alberta T2L 2M1, Canada.

Coarse-grained molecular dynamics simulation is widely accepted for assessment of a large complex biological system, but it may also lead to a misleading conclusion. The challenge is to simulate protein structural dynamics (such as folding-unfolding behavior) due to the lack of a necessary backbone flexibility. This study developed a standard coarse-grained model directly from the protein atomic structure and amino acid coarse-grained FF (such as MARTINI FF v2.

View Article and Find Full Text PDF

Structure-Function Analysis of CYP105A1 in the Metabolism of Nonsteroidal Anti-inflammatory Drugs.

Biochemistry

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs.

View Article and Find Full Text PDF

As structural biology and drug discovery depend on high-quality protein structures, assessment tools are essential. We describe a new method for validating amino-acid conformations: "PhiSiCal ([Formula: see text]al) Checkup." Twenty new joint probability distributions in the form of statistical mixture models explain the empirical distributions of dihedral angles [Formula: see text] of canonical amino acids in experimental protein structures.

View Article and Find Full Text PDF

We introduce , an antibody variable domain diffusion model based on a general protein backbone diffusion framework, which was extended to handle multiple chains. Assessing the designability and novelty of the structures generated with our model, we find that produces highly designable antibodies that can contain novel binding regions. The backbone dihedral angles of sampled structures show good agreement with a reference antibody distribution.

View Article and Find Full Text PDF

()--(2,6-Di-methyl-phen-yl)-1-[(2-meth-oxy-phen-yl)amino]-methanimine oxide methanol monosolvate.

IUCrdata

October 2024

School of Chemistry and Physics, University of KwaZulu Natal, Private Bag X54001, Westville, Durban, 4000, South Africa.

In the title solvate, CHNO·CHO, the dihedral angles between the formamidine backbone and the pendant 2-meth-oxy-phenyl and 2,6-di-methyl-phenyl groups are 14.84 (11) and 81.61 (12)°, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!