A healable, semitransparent silver nanowire-polymer composite conductor.

Adv Mater

Department of Materials Science and Engineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, CA 90095, USA.

Published: August 2013

A quick recovery: A semitransparent composite conductor comprising a layer of silver nanowire percolation network inlaid in the surface layer of a Diels-Alder-based healable polymer film is fabricated. The composite is flexible and highly conductive, and is capable of both structural and electrical healing via heating. Cut samples that completely lose their conductivity can recover 97% of it within 5 minutes of heating at 110 °C. The cutting and healing can be repeated at the same location for multiple cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201301069DOI Listing

Publication Analysis

Top Keywords

composite conductor
8
healable semitransparent
4
semitransparent silver
4
silver nanowire-polymer
4
nanowire-polymer composite
4
conductor quick
4
quick recovery
4
recovery semitransparent
4
semitransparent composite
4
conductor comprising
4

Similar Publications

Context: Nitrocellulose, widely used in energetic materials, is prone to thermal and chemical degradation, compromising safety and performance. Stabilizers are molecules used in the composition of nitrocellulose-based propellants to inhibit the autocatalytic degradation process that produces nitrous gases and free nitric acids. Curcumin, (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, known for its antioxidant properties and a potential green stabilizer, was investigated using Density Functional Theory (DFT) focusing on its interaction with nitrogen dioxide.

View Article and Find Full Text PDF

Copper catastrophic oxidation: Theory and mechanisms.

J Chem Phys

December 2024

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninsky Pr., 119334 Moscow, Russian Federation.

Copper and its alloys with transition metals (as good conductors of electricity and heat) are extensively used in electrical industry, electronics, and cooling systems and can be the subject of surface degradation by oxidation. In certain circumstances, surface degradation of copper occurs catastrophically. Predicting catastrophic oxidation kinetics and developing protective technology require understanding the mass transfer mechanisms in the solid/liquid/gas composite scale formed on the copper surface during catastrophic degradation.

View Article and Find Full Text PDF

Cocklebur-Inspired Robust Non-flammable Polymer Thermo Conductor for CPU Cooling.

Small

December 2024

School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China.

Article Synopsis
  • Polymers used for CPU heat dissipation need to balance high thermal conductivity with mechanical strength, but existing high-conductivity polymers face issues like high costs and flammability.
  • Researchers developed cast polyurethane composites mimicking the structure of cocklebur, using copper compounds and alumina microspheres to improve properties and prevent flammability.
  • The resulting composites show strong performance with a tensile strength of 15.9 MPa and thermal conductivity of 2.51 W m⁻¹ K⁻¹, positioning them as viable and sustainable solutions for cooling in advanced electronics and new energy uses.
View Article and Find Full Text PDF

2,5-Dihydroxyterephthalic acid (H) is well-known for its use in the construction of functional metal-organic frameworks (MOFs). Among them, simple coordination polymers (CPs), such as lithium and sodium coordination polymers with H, have been used successfully to synthesize electrically conductive MOFs and have also demonstrated great potential as positive or negative electrode materials on their own. However, there has been little exploration of the structure and physicochemical properties of these and other alkali complexes of H.

View Article and Find Full Text PDF

The multi-scale dissipation mechanism of composite solid electrolyte based on nanofiber elastomer for all-solid-state lithium metal batteries.

J Colloid Interface Sci

December 2024

State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China; School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. Electronic address:

Developing next generation batteries necessitates a paradigm shift in the way to engineering solutions for materials challenges. In comparison to traditional organic liquid batteries, all-solid-state batteries exhibit some significant advantages such as high safety and energy density, yet solid electrolytes face challenges in responding dimensional changes of electrodes driven by mass transport. Herein, the critical mechanical parameters affecting battery cycling duration are evaluated based on Spearman rank correlation coefficient, decoupling them into strength, ductility, stiffness, toughness, elasticity, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!