Extraction of electron beam dose parameters from EBT2 film data scored in a mini phantom.

Australas Phys Eng Sci Med

Department of Medical Physics, Faculty of Health Sciences, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa.

Published: September 2013

Quality assurance of medical linear accelerators includes dosimetric parameter measurement of therapeutic electron beams e.g. relative dose at a depth of 80% (R₈₀). This parameter must be within a tolerance of 0.2 cm of the declared value. Cumbersome water tank measurements can be regarded as a benchmark to measure electron depth dose curves. A mini-phantom was designed and built, in which a strip of GAFCHROMIC® EBT2 film could be encased tightly for electron beam depth dose measurement. Depth dose data were measured for an ELEKTA Sl25 MLC, ELEKTA Precise, and ELEKTA Synergy (Elekta Oncology Systems, Crawley, UK) machines. The electron beam energy range was between 4 and 22 MeV among the machines. A 10 × 10 cm² electron applicator with 95 cm source-surface-distance was used on all the machines. 24 h after irradiation, the EBT2 film strips were scanned on Canon CanoScan N670U scanner. Afterwards, the data were analysed with in-house developed software that entailed optical density to dose conversion, and optimal fitting of the PDD data to de-noise the raw data. From the PDD data R₈₀ values were solved for and compared with acceptance values. A series of tests were also carried out to validate the use of the scanner for film Dosimetry. These tests are presented in this study. It was found that this method of R₈₀ evaluation was reliable with good agreement with benchmark water tank measurements using a commercial parallel plate ionization chamber as the radiation detector. The EBT2 film data yielded R₈₀ values that were on average 0.06 cm different from benchmark water tank measured R₈₀ values.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13246-013-0205-1DOI Listing

Publication Analysis

Top Keywords

ebt2 film
16
electron beam
12
water tank
12
depth dose
12
r₈₀ values
12
film data
8
tank measurements
8
pdd data
8
benchmark water
8
data
7

Similar Publications

The sensitivity of radiochromic films to UV-blue light is increasingly considered for light dosimetry purposes, owing to their bidimensional detection capabilities and ease of use. While film response to radiation intensity has been widely investigated by commercial scanners, spatial resolution studies remain scarce, especially for small field-of-view applications. These are of growing interest due to the antimicrobial or photo-bio-stimulating effects of UV-blue light sources in in vitro, ex vivo and in vivo models, where precise knowledge of irradiation conditions with adequate spatial resolution is crucial.

View Article and Find Full Text PDF

The response of the modified GAFCHROMIC EBT2 radiochromic film to DC Oxygen glow discharge plasma was investigated using a flatbed scanner and an UV-Vis spectrophotometer. The film was modified by removing the polyester overlaminate, adhesive, and topcoat layers with a total thickness of 80 µm, and is now referred to as EBT2-M. The EBT2-M films were exposed to DC Oxygen plasma for different durations: 0, 0.

View Article and Find Full Text PDF

Background: The presence of heterogeneity within the radiation field increases the challenges of small field dosimetry. In this study, the performance of MAGIC polymer gel was evaluated in the dosimetry of small fields beyond bone heterogeneity.

Materials And Methods: Circular field sizes of 5, 10, 20 and 30 mm were used and Polytetrafluoroethylene with density of 2.

View Article and Find Full Text PDF

Purpose: In vivo dosimetry is a quality assurance tool that provides post-treatment measurement of the absorbed dose as delivered to the patient. This dosimetry compares the prescribed and measured dose delivered to the target volume. In this study, a tissue-equivalent water phantom provided the simulation of the human environment.

View Article and Find Full Text PDF

Background: This study measured and calculated dose distributions around a unique gold plaque for whole-eye radiotherapy (to treat retinoblastoma). The applicator consists of a pericorneal ring attached to the four extraocular muscles and four legs, each loaded with I-125 seeds. They are inserted beneath the conjunctiva in-between each pair of muscles and attached anteriorly to the ring.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!