The study aims to determine the expression of telomerase reverse transcriptase (TERT) in the glial scar following spinal cord injury in the rat, and to explore its relationship with glial scar formation. A total of 120 Sprague-Dawley rats were randomly divided into three groups: SCI only group (without TERT interference), TERT siRNA group (with TERT interference), and sham group. The TERT siRNA and SCI only groups received spinal cord injury induced by the modified Allen's weight drop method. In the sham group, the vertebral plate was opened to expose the spinal cord, but no injury was modeled. Five rats from each group were sacrificed under anesthesia at days 1, 3, 5, 7, 14, 28, 42, and 56 after spinal cord injury. Specimens were removed for observation of glial scar formation using hematoxylin-eosin staining and immunofluorescence detection. mRNA and protein expressions of TERT and glial fibrillary acidic protein (GFAP) were detected by reverse-transcription (RT)-PCR and western blotting, respectively. Hematoxylin-eosin staining showed evidence of gliosis and glial scarring in the spinal cord injury zone of the TERT siRNA and SCI only groups, but not in the sham group. Immunofluorescence detection showed a significant increase in GFAP expression at all time points after spinal cord injury in the SCI only group (81 %) compared with the TERT siRNA group (67 %) and sham group (2 %). In contrast, the expression of neurofilament protein 200 (NF-200) was gradually reduced and remained at a stable level until 28 days in the SCI only group. There were no NF-200-labeled cells in the spinal cord glial scar and cavity at day 56 after spinal cord injury. NF-200 expression at each time point was significantly lower in the SCI only group than the TERT siRNA group, while there was no change in the sham group. Western blotting showed that TERT and GFAP protein expressions changed dynamically and showed a linear relationship in the SCI only group (r = 0.765, P < 0.01), while there was no obvious linear relationship in the sham group (r = 0.208, P = 0.121). RT-PCR results showed a dynamic expression of TERT and GFAP mRNA in the SCI only group, exhibiting a linear relationship (r = 0.722, P < 0.01), while there was no linear relationship in the sham group (r = 0.206, P = 0.180). Our data indicate that TERT has a dynamic expression in the spinal cord glial scar, which positively correlates to GFAP expression, and may be important for promoting glial scar formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732768 | PMC |
http://dx.doi.org/10.1007/s11064-013-1097-x | DOI Listing |
Sci Rep
January 2025
Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.
View Article and Find Full Text PDFJ Prev Alzheimers Dis
February 2025
Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:
Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.
Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.
J Prev Alzheimers Dis
February 2025
School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China. Electronic address:
Background: The associations of early-onset coronary heart disease (CHD) and genetic susceptibility with incident dementia and brain white matter hyperintensity (WMH) remain unclear. Elucidation of this problem could promote understanding of the neurocognitive impact of early-onset CHD and provide suggestions for the prevention of dementia.
Objectives: This study aimed to investigate whether observed and genetically predicted early-onset CHD were related to subsequent dementia and WMH volume.
J Prev Alzheimers Dis
February 2025
Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore. Electronic address:
Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.
View Article and Find Full Text PDFAnn Vasc Surg
January 2025
Division of Vascular Surgery, Penn State Milton S. Hershey Medical Center, Hershey, PA.
Objectives: The population in the U.S., and across the world is aging rapidly which warrants an assessment of the safety of surgical approaches in elderly individuals to better risk stratify and inform surgeons' decision making for optimal patient care.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!