Specialist and generalist bees use olfactory and visual cues to find and recognise flowering plants. Specialised (oligolectic) bees rely on few host plants for pollen collection. These bee species are suggested to use specific volatiles, but it is unknown whether they have dedicated adaptations for these particular compounds compared to bees not specialised on the same plants. In the present study, we investigated the perception of host odorants and its neuronal substrate with regard to host-plant finding behaviour in oligolectic bees. We reconstructed the antennal lobes (AL) in the Salix specialist, Andrena vaga, and counted about 135 glomeruli and thereby less than the approximately 160 in honeybees. Using calcium imaging experiments to measure neural activity in the bee brain, we recorded odorant-evoked activity patterns in the AL of A. vaga and, for comparison, in the generalist honeybee, Apis mellifera. Our physiological experiments demonstrated that A. vaga bees were particularly sensitive to 1,4-dimethoxybenzene, a behaviour-mediating odorant of Salix host flowers. We found more sensitive glomeruli in the specialised bees as compared to generalist honeybees. This neural adaptation might allow oligolectic A. vaga bees to effectively locate host plants from distances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00359-013-0835-5 | DOI Listing |
J Evol Biol
January 2025
Laboratorio de Ecotono, Instituto de Investigaciones em Biodiversidad y Medioambiente (INIBIOMA), CONICET- Universidad Nacional del Comahue, San Carlos de Bariloche, Río Negro, Argentina.
Modularity and developmental (in)stability have the potential to influence phenotype production and, consequently, the evolutionary trajectories of species. Depending on the environmental factors involved and the buffering capacity of an organism, different developmental outcomes are expected. Cactophilic Drosophila species provide an established eco-evolutionary model with well-studied ecological conditions, making them ideal for studying these phenomena.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
Université Claude Bernard Lyon 1, Laboratoire d'Écologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France;
, able to establish symbiosis with mutualistic bacteria of the genus , is one of the main species in European riparian environments, where it performs numerous biological and socio-economic functions. However, riparian ecosystems face a growing threat from , a highly aggressive waterborne pathogen causing severe dieback in . To date, the tripartite interaction between the host plant, the symbiont and the pathogen remains unexplored but is critical for understanding how pathogen-induced stress influences the nodule molecular machinery and so on the host-symbiont metabolism.
View Article and Find Full Text PDFJ Econ Entomol
January 2025
College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan 466001, China.
Species distribution modeling is extensively used for predicting potential distributions of invasive species. However, an ensemble modeling approach has been less frequently used particularly pest species. The bird cherry-oat aphid Rhopalosiphum padi L.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Ministry of Education Key Laboratory for Genetics, Breeding and Multiple Utilization of Crop, Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
The release of herbivore-induced plant volatiles (HIPVs) has been recognized to be an important strategy for plant adaptation to herbivore attack. However, whether these induced volatiles are beneficial to insect herbivores, particularly insect larvae, is largely unknown. We used the two important highly polyphagous lepidopteran pests and to evaluate the benefit on xenobiotic detoxification of larval exposure to HIPVs released by the host plant maize ().
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Forestry, Northeast Forestry University, Harbin 150040, PR China; Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin 150040, PR China. Electronic address:
The diversity of host plants is an important reason for the global spread of Hyphantria cunea. However, no studies have explored the role of the antioxidant defense system with catalase (CAT) as the core at the molecular level in the adaptation of the H. cunea to host plant secondary metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!