Using vocally inspired mechanical conditioning to enhance the synthesis of a cell-derived biomaterial.

Ann Biomed Eng

Department of Biomedical Engineering, College of Engineering, University of Arkansas, 317 Engineering Hall, Fayetteville, AR, 72701, USA,

Published: November 2013

The collection of cell-derived extracellular matrix (ECM) to form implantable biomaterials has therapeutic potential. However, a significant challenge to the creation of these biomaterials is the ability to produce an adequate quantity of ECM from cells in culture. Mechanical stimulation has long been viewed as a practical means to enhance cellular matrix production. In this study we explored the influence of vocally inspired mechanical stimulation, a unique combination of high frequency vibration and low frequency strain, on the production of ECM. Using a custom fabricated vocal bioreactor, tracheal fibroblast seeded sacrificial foams were treated for 3 weeks using either isolated cyclic strain, combined cyclic strain and vibration (dual mode), or static conditioning. When compared to static controls, ECM production was significantly increased for samples conditioned with either cyclic strain or dual mode stimulation. The quantity of ECM harvested from sacrificial foams increased from 25 ± 1 mg for statically conditioned control foams, to 34 ± 3 and 52 ± 10 mg for cyclic strain and dual mode conditioned samples respectively. Furthermore, mechanical conditioning significantly increased the elastic modulus of ECM biomaterials collected from sacrificial foams. Static control modulus increased from 40 ± 2 to 63 ± 7 kPa and 92 ± 7 kPa following isolated cyclic strain and dual mode conditioning, respectively. These results indicate that cyclic strain conditioning can be used to accelerate the production of ECM by human tracheal cells during growth in culture, and that the addition of high frequency vibration to the conditioning program further enhances ECM production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-013-0845-zDOI Listing

Publication Analysis

Top Keywords

cyclic strain
24
dual mode
16
sacrificial foams
12
strain dual
12
vocally inspired
8
inspired mechanical
8
mechanical conditioning
8
ecm
8
quantity ecm
8
mechanical stimulation
8

Similar Publications

Extrusion-based 3D bioprinting is one of the most promising and widely used technologies in bioprinting. However, the development of bioprintable, biocompatible bioinks with tailored mechanical and biological properties remains a major challenge in this field. Alginate dialdehyde-gelatin (ADA-GEL) hydrogels face these difficulties and enable to tune the mechanical properties depending on the degree of oxidation (% DO) of ADA.

View Article and Find Full Text PDF

Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.

View Article and Find Full Text PDF

Diversification of Lipopeptide Analogues Drives Versatility in Biological Activities.

J Agric Food Chem

January 2025

Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Universidad de Málaga, Málaga 29071, Spain.

Article Synopsis
  • Cyclic lipopeptides (CLPs) are important secondary metabolites with different biological activities, primarily produced in three families: iturins, fengycins, and surfactins, each consisting of cyclic peptides attached to fatty acids.
  • The study focused on isolating and analyzing various CLP variants from the strain UMAF6639, testing their effects on antifungal activity and promoting plant growth, revealing that both these effects depend on the specific lipopeptide variant and its concentration.
  • The research highlights a balance in the abundance and toxicity of these variants, showing that less abundant toxic variants can work synergistically with more abundant, less toxic ones, while also contributing to increased bacterial populations and bioactivity, which could lead to sustainable agricultural
View Article and Find Full Text PDF

Enhancement of dynamic characteristics of sand through bio-cementation is one of the prospective ground improvement techniques for sustainable development considering seismic loading scenarios. Microbially induced calcite precipitation (MICP) has already been established as an efficient and low-cost and sustainable bio-cementation technique. In the present study, engineering characteristics of poorly graded standard Ennore sand of India have been improved through the bio-cementation effects of Sporosarcina pasteurii bacteria using the MICP technique.

View Article and Find Full Text PDF

To investigate the changes in the strength and deformation of the blast load-damaged sandstone roof plate under cyclic loading and unloading conditions at different confining pressures, a triaxial loading device was used to carry out graded cyclic unloading tests on specimens with different degrees of damage, and the test results were summarized. The effects of blast-load-induced damage, confining pressure and loading stage on the strength, cohesion, internal friction angle, residual strain and volumetric strain were analyzed. (1) Compared with that of the undamaged specimen at a confining pressure of 0 MPa, the peak stress reductions in the vibration-damaged and blast-damaged specimens were 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!