Neuroimaging in psychiatric pharmacogenetics research: the promise and pitfalls.

Neuropsychopharmacology

1] Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA [2] Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA.

Published: November 2013

The integration of research on neuroimaging and pharmacogenetics holds promise for improving treatment for neuropsychiatric conditions. Neuroimaging may provide a more sensitive early measure of treatment response in genetically defined patient groups, and could facilitate development of novel therapies based on an improved understanding of pathogenic mechanisms underlying pharmacogenetic associations. This review summarizes progress in efforts to incorporate neuroimaging into genetics and treatment research on major psychiatric disorders, such as schizophrenia, major depressive disorder, bipolar disorder, attention-deficit/hyperactivity disorder, and addiction. Methodological challenges include: performing genetic analyses in small study populations used in imaging studies; inclusion of patients with psychiatric comorbidities; and the extensive variability across studies in neuroimaging protocols, neurobehavioral task probes, and analytic strategies. Moreover, few studies use pharmacogenetic designs that permit testing of genotype × drug effects. As a result of these limitations, few findings have been fully replicated. Future studies that pre-screen participants for genetic variants selected a priori based on drug metabolism and targets have the greatest potential to advance the science and practice of psychiatric treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799069PMC
http://dx.doi.org/10.1038/npp.2013.152DOI Listing

Publication Analysis

Top Keywords

neuroimaging
5
neuroimaging psychiatric
4
psychiatric pharmacogenetics
4
pharmacogenetics promise
4
promise pitfalls
4
pitfalls integration
4
integration neuroimaging
4
neuroimaging pharmacogenetics
4
pharmacogenetics holds
4
holds promise
4

Similar Publications

Development and evaluation of deuterated [F]JHU94620 isotopologues for the non-invasive assessment of the cannabinoid type 2 receptor in brain.

EJNMMI Radiopharm Chem

December 2024

Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.

Background: The cannabinoid type 2 receptors (CB2R) represent a target of increasing importance in neuroimaging due to its upregulation under various neuropathological conditions. Previous evaluation of [F]JHU94620 for the non-invasive assessment of the CB2R availability by positron emission tomography (PET) revealed favourable binding properties and brain uptake, however rapid metabolism, and generation of brain-penetrating radiometabolites have been its main limitations. To reduce the bias of CB2R quantification by blood-brain barrier (BBB)-penetrating radiometabolites, we aimed to improve the metabolic stability by developing -d and -d deuterated isotopologues of [F]JHU94620.

View Article and Find Full Text PDF

Longitudinal trajectories of digital upper limb biomarkers for multiple sclerosis.

Eur J Neurol

January 2025

Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.

Background: Upper limb dysfunction is a common debilitating feature of relapsing-remitting multiple sclerosis (RRMS). We aimed to examine the longitudinal trajectory of the iPad®-based Manual Dexterity Test (MDT) and predictors of change over time.

Methods: We prospectively enrolled RRMS patients (limited to Expanded Disability Status Scale (EDSS) < 4).

View Article and Find Full Text PDF

Early-onset Alzheimer's disease (EOAD) is less investigated than the more common late-onset Alzheimer's disease (LOAD) despite its more aggressive course. A cortical signature of EOAD was recently proposed and may facilitate EOAD investigation. Here, we aimed to validate this proposed MRI biomarker of EOAD neurodegeneration in an Appalachian clinical cohort.

View Article and Find Full Text PDF

Introduction: TOMM40 and APOC1 variants can modulate the APOE-ε4-related Alzheimer's disease (AD) risk by up to fourfold. We aim to investigate whether the genetic modulation of ε4-related AD risk is reflected in brain morphology.

Methods: We tested whether 27 magnetic resonance imaging-derived neuroimaging markers of neurodegeneration (volume and thickness in temporo-limbic regions) are associated with APOE-TOMM40-APOC1 polygenic profiles using the National Alzheimer's Coordinating Center Uniform Data Set linked to the AD Genetic Consortium data.

View Article and Find Full Text PDF

Integrating rare pathogenic variant prioritization with gene-based association analysis to identify novel genes and relevant multimodal traits for Alzheimer's disease.

Alzheimers Dement

December 2024

Department of Neurology, Zhongshan Hospital and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.

Introduction: Increasing evidence has highlighted rare variants in Alzheimer's disease (AD). However, insufficient sample sizes, especially in underrepresented ethnic groups, hinder their investigation. Additionally, their impact on endophenotypes remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!