A major challenge in using spins in the solid state for quantum technologies is protecting them from sources of decoherence. This is particularly important in nanodevices where the proximity of material interfaces, and their associated defects, can play a limiting role. Spin decoherence can be addressed to varying degrees by improving material purity or isotopic composition, for example, or active error correction methods such as dynamic decoupling (or even combinations of the two). However, a powerful method applied to trapped ions in the context of atomic clocks is the use of particular spin transitions that are inherently robust to external perturbations. Here, we show that such 'clock transitions' can be observed for electron spins in the solid state, in particular using bismuth donors in silicon. This leads to dramatic enhancements in the electron spin coherence time, exceeding seconds. We find that electron spin qubits based on clock transitions become less sensitive to the local magnetic environment, including the presence of (29)Si nuclear spins as found in natural silicon. We expect the use of such clock transitions will be of additional significance for donor spins in nanodevices, mitigating the effects of magnetic or electric field noise arising from nearby interfaces and gates.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nnano.2013.117DOI Listing

Publication Analysis

Top Keywords

clock transitions
12
spin qubits
8
spins solid
8
solid state
8
electron spin
8
spin
5
atomic clock
4
transitions
4
transitions silicon-based
4
silicon-based spin
4

Similar Publications

Optical clocks require an ultra-stable laser to probe and precisely measure the frequency of the narrow-linewidth clock transition. We introduce a portable ultraviolet (UV) laser system for use in an aluminum quantum logic clock, demonstrating a fractional frequency instability of approximately mod   = 2 × 10. The system is based on an ultra-stable cavity with crystalline AlGaAs/GaAs mirror coatings, with a frequency quadrupling system employing two single-pass second-harmonic generation (SHG) stages.

View Article and Find Full Text PDF

An antagonistic role of clock genes and lima1 in kidney regeneration.

Commun Biol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.

The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish.

View Article and Find Full Text PDF

Dim blue light at night worsens high-fat diet-induced kidney damage via increasing corticosterone levels and modulating the expression of circadian clock genes.

Ecotoxicol Environ Saf

January 2025

National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China. Electronic address:

Obesity is a contributing factor that increases the likelihood of developing chronic kidney disease. In recent years, studies have found that light pollution worldwide promoted obesity, which was known to be a consequence of circadian rhythm disruption. Nevertheless, the impact of light pollution on kidney disease associated with obesity remains mostly unknown, and potential processes have been minimally investigated.

View Article and Find Full Text PDF

A gap was identified in having enough competent charge nurses and shift coordinators on a Family Beginnings unit. To mitigate the gap, immediate evidence-based practice solutions were developed, and a new nurse leadership program was implemented. Literature synthesis identified best practices for achieving competency when transitioning staff nurses into the leadership roles of charge nurse and shift coordinator.

View Article and Find Full Text PDF

Spatial Optical Simulator for Classical Statistical Models.

Phys Rev Lett

December 2024

Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.

Optical simulators for the Ising model have demonstrated great promise for solving challenging problems in physics and beyond. Here, we develop a spatial optical simulator for a variety of classical statistical systems, including the clock, XY, Potts, and Heisenberg models, utilizing a digital micromirror device composed of a large number of tiny mirrors. Spins, with desired amplitudes or phases of the statistical models, are precisely encoded by a patch of mirrors with a superpixel approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!