Phosphorylation of inhibitor of nuclear transcription factor κB (IκB) by IκB kinase (IKK) triggers the degradation of IκB and migration of cytoplasmic κB to the nucleus where it promotes the transcription of its target genes. Activation of IKK is achieved by phosphorylation of its main subunit, IKKβ, at the activation loop sites. Here, we report the 2.8 Å resolution crystal structure of human IKKβ (hIKKβ), which is partially phosphorylated and bound to the staurosporine analog K252a. The hIKKβ protomer adopts a trimodular structure that closely resembles that from Xenopus laevis (xIKKβ): an N-terminal kinase domain (KD), a central ubiquitin-like domain (ULD), and a C-terminal scaffold/dimerization domain (SDD). Although hIKKβ and xIKKβ utilize a similar dimerization mode, their overall geometries are distinct. In contrast to the structure resembling closed shears reported previously for xIKKβ, hIKKβ exists as an open asymmetric dimer in which the two KDs are further apart, with one in an active and the other in an inactive conformation. Dimer interactions are limited to the C-terminal six-helix bundle that acts as a hinge between the two subunits. The observed domain movements in the structures of IKKβ may represent trans-phosphorylation steps that accompany IKKβ activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829360 | PMC |
http://dx.doi.org/10.1074/jbc.M113.482596 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
The University of Hong Kong, Department of Chemistry, Pokfulam Road, 999077, Hong Kong, CHINA.
Electrically conductive coordination polymers (ECCPs), particularly those incorporating benzenehexathiol (BHT) ligands, are emerging as a distinctive class of electronic materials with tunable semiconducting and metallic properties. However, the exploration of novel ECCPs with low-symmetry structures and electrical anisotropy remains under development. Here, we report the on-water surface synthesis of a novel ECCP, namely Cu5BHT, which exhibits a low-symmetry structure and unique in-plane electrical anisotropy that differs from the well-known Cu3BHT phase.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Tianjin University, School of Chemical Engineering and Technology, Yaguan Road #135, Jinnan District, Tianjin 300354, P. R. China, CHINA.
In this study, we developed new chiral hybrid perovskites, (R/S-MBA)(GA)PbI4, by incorporating achiral guanidinium (GA+) and chiral R/S-methylbenzylammonium (R/S-MBA+) into the perovskite framework. The resulting materials possess a distinctive structural configuration, positioned between 1D and 2D perovskites, which we describe as 1.5D.
View Article and Find Full Text PDFBiochimie
January 2025
LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. Electronic address:
This study focuses on the quaternary structure of the viper-secreted phospholipase A (PLA), a central toxin in viper envenomation. PLA enzymes catalyse the hydrolysis of the sn-2 ester bond of membrane phospholipids. Small-molecule inhibitors that act as snakebite antidotes, such as varespladib, are currently in clinical trials.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, PR China. Electronic address:
In the endocrine system, anaplastic thyroid cancer (ATC) is extremely aggressive since it inhibits the majority of medications and treatments. Therefore, there is an immediate demand to identify new treatment approaches or drugs to deal with ATC. Recently, amino acid Schiff base copper complexes have received great attention due to their excellent anti-tumor activity.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China; Light Alloy Research Institute, Central South University, Changsha 410083, China.
The chemical corrosion of the TC4 radiation rod surface (TRRS) during the ultrasonic casting process has the potential to significantly impair the smooth conduction of ultrasonic waves. However, in the later stages of corrosion, a self-protected structure (TSPS) emerges under the ultrasonic cavitation effect, which serves to impede the chemical corrosion of the TRRS and markedly reduce the rate of mass loss of the radiation rod. This ensures the smooth ultrasonic conduction of the radiation rod during operation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!