Recent advances are described for the isolation and affinity maturation of antibodies that couple in vitro somatic hypermutation (SHM) with mammalian cell display, replicating key aspects of the adaptive immune system. SHM is dependent on the action of the B cell specific enzyme, activation-induced cytidine deaminase (AID). AID-directed SHM in vitro in non-B cells, combined with mammalian display of a library of human antibodies, initially naïve to SHM, can be used to isolate and affinity mature antibodies via iterative cycles of fluorescence-activated cell sorting (FACS) under increasingly stringent sort conditions. SHM observed in vitro closely resembles SHM observed in human antibodies in vivo in both mutation type and positioning in the antibody variable region. In addition, existing antibodies originating from mouse immunization, in vivo based libraries, or alternative display technologies such as phage can also be affinity matured in a similar manner. The display system has been developed to enable simultaneous high-level cell surface expression and secretion of the same protein through alternate splicing, where the displayed protein phenotype remains linked to genotype, allowing soluble secreted antibody to be simultaneously characterized in biophysical and cell-based functional assays. This approach overcomes many of the previous limitations of mammalian cell display, enabling direct selection and maturation of antibodies as full-length, glycosylated IgGs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymeth.2013.06.010DOI Listing

Publication Analysis

Top Keywords

mammalian cell
12
cell display
12
maturation antibodies
8
human antibodies
8
shm observed
8
display
6
antibodies
6
shm
6
cell
5
mammalian
4

Similar Publications

Background: During the latter stages of their development, mammalian oocytes under dramatic chromatin reconfiguration, transitioning from a non-surrounded nucleolus (NSN) to a surrounded nucleolus (SN) stage, and concomitant transcriptional silencing. Although the NSN-SN transition is known to be essential for developmental competence of the oocyte, less is known about the accompanying molecular changes. Here we examine the changes in the transcriptome and DNA methylation during the NSN to SN transition in mouse oocytes.

View Article and Find Full Text PDF

Each human genome has approximately 5 million DNA variants. Even for complete loss-of-function variants causing inherited, monogenic diseases, current understanding based on gene-specific molecular function does not adequately predict variability observed between people with identical mutations or fluctuating disease trajectories. We present a parallel paradigm for loss-of-function variants based on broader consequences to the cell when aberrant polypeptide chains of amino acids are translated from mutant RNA to generate mutated proteins.

View Article and Find Full Text PDF

All-in-one gene therapy alternative for DBAS.

Cell Stem Cell

January 2025

Division of Hematopoietic Innovative Therapies, CIEMAT, Madrid, Spain; Instituto Nacional de Investigación Biomédica en Enfermedades Raras (CIBERER), Madrid, Spain; Advanced Therapies Unit, IIS-Fundación Jimenez Diaz (IIS-FJD, UAM), 28040 Madrid, Spain. Electronic address:

Diamond-Blackfan anemia syndrome is a ribosomopathy classified among the bone marrow failure syndromes. This disease exhibits significant heterogeneity, with up to 24 genetic variants identified to date. Voit et al.

View Article and Find Full Text PDF

Transposon exonization generates new protein-coding sequences.

Mol Cell

January 2025

State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China. Electronic address:

In a recent issue of Cell, Arribas et al. and Pasquesi et al. explore the phenomenon of transposable element (TE) exonization and its impact on proteomic and immune diversity, highlighting its potential role as a driver of evolutionary innovation.

View Article and Find Full Text PDF

A little protein makes big news in translation initiation.

Mol Cell

January 2025

Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA. Electronic address:

While most of the regulation of translation initiation occurs in the cytosol predominantly through phosphorylation, Ly et al. have discovered the first instance of regulation via protein concentration due to disruption of the nuclear membrane at mitosis. Only eIF1 appears to be involved in this regulation, and its release at mitosis enhances translational accuracy of start codon recognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!