Soybean (Glycine max) is a relatively cold intolerant plant. In most stress tolerant plants the responsive expression of dehydrin proteins in vegetative tissues can be a significant contributor to protection against environmental stresses. The purpose of this study was to examine the expression of dehydrins in various organs and the cold-responses of dehydrin genes in vegetative tissues of soybean. Examination of the soybean genome indicated the presence of genes encoding ten distinct dehydrins. Levels of dehydrin proteins were probed with several antibodies specific to dehydrins or to the signature K-sequence. A single vegetatively expressed dehydrin protein was detected and the levels were insignificantly altered in response to cold, drought, or salt stress, nor was the transcript responsive to ABA. This SK2-type, acidic dehydrin family member (GmERD14) was purified, identified by mass spectroscopy, and shown to be in vivo phosphorylated; indicating characteristics similar to other known acidic dehydrins. The lack of cold stress-regulated acidic dehydrin expression may contribute to the inability of soybean to cold acclimate. While transcripts for all ten dehydrins could be detected in various tissues, only three accumulated to significant levels in vegetative tissues (two of the KS type and one of SK2 type). One of these transcripts, a KS dehydrin, was accumulated following cold treatments. The accumulation of the KS dehydrin was also responsive to exogenous ABA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2013.05.013 | DOI Listing |
Front Plant Sci
December 2024
Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, School of Landscape and Architecture, Zhejiang A&F University, Hangzhou, Zhejiang, China.
Flower appearance stands as a key characteristic of flowering plants and is closely linked to their ornamental value. Phytohormone Gibberellin (GA), essential for plant growth and development are widely reported for expansion in flower. DELLA proteins are known to negatively regulate GA signaling and influences plant growth and development through the regulation of cell expansion.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Under a changing climate, enhancing the drought resilience of crops is critical to maintaining agricultural production and reducing food insecurity. Here, we demonstrate that seed priming with amorphous silica (SiO) nanoparticles (NPs) (20 mg/L) accelerated seed germination speed, increased seedlings vigor, and promoted seedling growth of rice under polyethylene glycol (PEG)-mimicking drought conditions. An orthogonal approach was used to uncover the mechanisms of accelerated seed germination and enhanced drought tolerance, including electron paramagnetic resonance, Fourier transform infrared spectroscopy (FTIR), metabolomics, and transcriptomics.
View Article and Find Full Text PDFPhotosynth Res
January 2025
School of Biological Sciences, Universiti Sains Malaysia (USM), 11800, Georgetown, Penang, Malaysia.
This study examined the impacts of different LED spectra on the growth of in vitro cultures of Musa acuminata cv. red banana and their biochemical profile, including the antioxidant enzymes catalase and ascorbate peroxidase, photosynthetic pigment and accumulation of total carbohydrate content. The far-red LEDs significantly increase shoot elongation (10.
View Article and Find Full Text PDFParasitic plants are a diverse and unique polyphyletic assemblage of flowering plants that survive by obtaining resources via direct vascular connections to a host plant. Ecologically important in their native ecosystems, these typically cryptic plants remain understudied and fundamental knowledge of the biology, ecology, and evolution of most species is lacking. This gap limits our understanding of ecosystems and conservation management.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Pharmacy and BioMolecular Sciences, Liverpool John Moores University, Byram Street, Liverpool L3 3AF, UK.
Protein S-acyl transferases (PATs) are a family of enzymes that catalyze protein S-acylation, a post-translational lipid modification involved in protein membrane targeting, trafficking, stability, and protein-protein interaction. S-acylation plays important roles in plant growth, development, and stress responses. Here, we report the genome-wide analysis of the family genes in the woodland strawberry (), a model plant for studying the economically important Rosaceae family.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!