Identification of honokiol metabolites in rats by the method of stable isotope cluster technique and ultra-high performance liquid chromatography/quadrupole-time-of-flight mass spectrometry.

J Chromatogr B Analyt Technol Biomed Life Sci

State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; College of Chemical Engineering, Sichuan University, Chengdu 610065, China.

Published: July 2013

Honokiol, a natural molecule isolated from Magnolia officinalis Rehd. et Wils., is widely known as an antitumor agent. In present work, an analysis of in vivo biotransformation and metabolites of honokiol has been performed by a combined method based on stable isotope cluster technique with honokiol-[(13)C6]-labeled and ultra-high performance liquid chromatography/quadrupole-time-of-flight-mass spectrometry (UHPLC/Q-TOF-MS). The metabolites could be easily identified by the determination of a chromatographically co-eluted pair of isotopomers (MS doublet peaks) with similar peak intensities and mass difference corresponding to that between isotope-labeled and non-isotope-labeled honokiol. A total of eighteen metabolites were detected and tentatively identified, fourteen of which were reported for the first time. The results indicated that the main metabolic pathways of honokiol in rats were hydroxylation, methylation, sulfation and glucuronidation. This study provided the first essential information on biotransformation and metabolites of honokiol in rats, which was very useful for further pharmacological and clinical studies of honokiol as a potent drug candidate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchromb.2013.05.020DOI Listing

Publication Analysis

Top Keywords

stable isotope
8
isotope cluster
8
cluster technique
8
ultra-high performance
8
performance liquid
8
biotransformation metabolites
8
metabolites honokiol
8
honokiol rats
8
honokiol
6
metabolites
5

Similar Publications

High-resolution isotopic data link settlement complexification to infant diets within the Roman Empire.

PNAS Nexus

January 2025

Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche (DiSTABiF) and Mediterranean bioArchaeological Research Advances (MAReA) centre, Università degli studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy.

Our study explores the potential relationship between infant feeding practices and settlement complexity in the Roman Empire through high-resolution Bayesian-modeled stable isotope measurements from incremental dentine. We compiled isotopic data from permanent first molars of individuals from various Roman sites: five from Bainesse (UK), 30 from Thessaloniki (Greece), along with new carbon and nitrogen isotope analyses from four individuals from Pompeii and six from Ostia Via del Mare (AVM). Our results reveal significant inter-site variability in breastfeeding durations, ranging from 1.

View Article and Find Full Text PDF

Previous studies showed no improvement in bacterial biomass for Puniceispirillum marinum IMCC1322 under light regimes. Nevertheless, in nutrient-replete cultures with higher inoculating cell densities, strain IMCC1322 exhibited proteorhodopsin photoheterotrophy. Increasing both inoculum size and the amino acid pool can eliminate quorum sensing and starvation responses in strain IMCC1322.

View Article and Find Full Text PDF

Mangrove flourishing/deterioration under the control of the Indian Summer Monsoon over the past ∼3,195 years in Phang Nga Province, Thailand.

Mar Environ Res

January 2025

Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China; Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:

Mangrove wetlands are strategic locations for mitigating climate changes. In order to address the harm of rapid climate change to mangrove ecosystems, it is necessary to scientifically predict the fate of mangrove ecosystems, which can be achieved by reconstructing the development history of mangrove forests. This study analyzes the contribution of mangrove-derived organic matter (CMOM) from sediment core F in Phang Nga Province, Thailand by using the endmember mixing model based on stable organic carbon isotopes (δC) and C/N (molar) ratio.

View Article and Find Full Text PDF

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

Correction for 'Responses of CO and CH in the alpine wetlands of the Tibetan Plateau to warming and nitrogen and phosphorus additions' by Wenbao Zhang ,, 2024, , 1516-1525, https://doi.org/10.1039/D4EM00174E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!