A novel retro-inverso peptide is a preferential JNK substrate-competitive inhibitor.

Int J Biochem Cell Biol

Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.

Published: August 2013

A novel 18 amino acid peptide PYC98 was demonstrated to inhibit JNK1 activity toward c-Jun. We observed a 5-fold increase in the potency of the retro-inverso form, D-PYC98 (a D-amino acid peptide in the reversed sequence) when compared with the inhibition achieved by L-PYC98, prompting our further evaluation of the D-PYC98 inhibitory mechanism. In vitro assays revealed that, in addition to the inhibition of c-Jun phosphorylation, D-PYC98 inhibited the JNK1-mediated phosphorylation of an EGFR-derived peptide, the ATF2 transcription factor, and the microtubule-regulatory protein DCX. JNK2 and JNK3 activities toward c-Jun were also inhibited, and surface plasmon resonance analysis confirmed the direct interaction of D-PYC98 and JNK1. Further kinetics analyses revealed the non-ATP competitive mechanism of action of D-PYC98 as a JNK1 inhibitor. The targeting of the JNK1 common docking site by D-PYC98 was confirmed by the competition of binding by TIJIP. However, as mutations of JNK1 R127 and E329 within the common docking domain did not impact on the affinity of the interaction with D-PYC98 measured by surface plasmon resonance analysis, other residues in the common docking site appear to contribute to the JNK1 interaction with D-PYC98. Furthermore, we found that D-PYC98 inhibited the related kinase p38 MAPK, suggesting a broader interest in developing D-PYC98 for possible therapeutic applications. Lastly, in evaluating the efficacy of this peptide to act as a substrate competitive inhibitor in cells, we confirmed that the cell-permeable D-PYC98-TAT inhibited c-Jun Ser63 phosphorylation during hyperosmotic stress. Thus, D-PYC98-TAT is a novel cell-permeable JNK inhibitor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2013.06.006DOI Listing

Publication Analysis

Top Keywords

interaction d-pyc98
12
common docking
12
d-pyc98
10
acid peptide
8
d-pyc98 inhibited
8
surface plasmon
8
plasmon resonance
8
resonance analysis
8
d-pyc98 jnk1
8
docking site
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!