The cationic single domain peptide mR18L has demonstrated lipid-lowering and anti-atherogenic properties in different dyslipidemic mouse models. Lipopolysaccharide (LPS)-mediated inflammation is considered as one of the potential triggers for atherosclerosis. Here, we evaluated anti-inflammatory effects of mR18L peptide against LPS-mediated inflammation. First, we tested the efficacy and tolerance of 1, 2.5 and 5mg/kg mR18L in normolipidemic rats stimulated with 5mg/kg LPS. LPS and then mR18L were injected in different intraperitoneal regions. By 2h post LPS, mR18L inhibited LPS-mediated plasma TNF-α elevation at all doses, with the effect being stronger for 2.5mg/kg (P<0.05 vs. 1mg/kg, non-significant vs. 5mg/kg). In a similar model, 2.5mg/kg mR18L reduced LPS-mediated inflammation in the liver, as assessed by microscopic examination of liver sections and measurements of iNOS expression in the liver tissue. In plasma, 2.5mg/kg mR18L decreased levels of TNF-α and IL-6, decreased endotoxin activity and enhanced HDL binding to LPS. In another similar experiment, mR18L administered 1h post LPS, prevented elevation of plasma triglycerides by 6h post LPS and increased plasma activity of anti-oxidant enzyme paraoxonase 1, along with noted trends in reducing plasma levels of endotoxin and IL-6. Surface plasmon resonance study revealed that mR18L readily binds LPS. We conclude that mR18L exerts anti-endotoxin activity at least in part due to direct LPS-binding and LPS-neutralizing effects. We suggest that anti-endotoxin activity of mR18L is an important anti-inflammatory property, which may increase anti-atherogenic potential of this promising orally active lipid-lowering peptide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3867294PMC
http://dx.doi.org/10.1016/j.bbrc.2013.06.020DOI Listing

Publication Analysis

Top Keywords

peptide mr18l
8
lps-mediated inflammation
8
lps mr18l
8
mr18l
6
cationic peptide
4
mr18l lipid
4
lipid lowering
4
lowering properties
4
properties inhibits
4
inhibits lps-induced
4

Similar Publications

The cationic single domain peptide mR18L has demonstrated lipid-lowering and anti-atherogenic properties in different dyslipidemic mouse models. Lipopolysaccharide (LPS)-mediated inflammation is considered as one of the potential triggers for atherosclerosis. Here, we evaluated anti-inflammatory effects of mR18L peptide against LPS-mediated inflammation.

View Article and Find Full Text PDF

Objective: We investigated two apoE mimetic peptides with similar long-term plasma cholesterol reducing abilities for their effects on atherosclerotic lesions in Western diet-fed female LDL-receptor (LDL-R) null mice.

Methods And Results: Single doses of peptides Ac-hE18A-NH(2) and mR18L were administered retro-orbitally to LDL-R null mice on Western diet and plasma cholesterol was measured at 10 min, 4 h, and 24 h post administration. Peptide mR18L and not Ac-hE18A-NH(2) reduced plasma cholesterol levels significantly at 4 h post administration.

View Article and Find Full Text PDF

We have shown that Ac-hE18A-NH₂, a dual-domain cationic apolipoprotein-mimetic peptide, reduces plasma cholesterol levels in dyslipidemic mice. Two single-domain cationic peptides based on the lytic class L peptide 18L were developed to test the hypothesis that a single-domain cationic amphipathic peptide can reduce atherosclerosis in apolipoprotein (apo)E null mice when orally administered. To incorporate anti-inflammatory properties, aromatic residues were clustered in the nonpolar face similar to peptide 4F, resulting in modified 18L (m18L).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!