Opitz G/BBB Syndrome (OS) is a multiple congenital anomaly disorder characterized by developmental defects of midline structures. The most relevant clinical signs are ocular hypertelorism, hypospadias, cleft lip and palate, laryngo-tracheo-esophageal abnormalities, imperforate anus, and cardiac defects. Developmental delay, intellectual disability and brain abnormalities are also present. The X-linked form of this disorder is caused by mutations in the MID1 gene coding for a member of the tripartite motif family of E3 ubiquitin ligases. Here, we describe 12 novel patients that carry MID1 mutations emphasizing that laryngo-tracheo-esophageal defects are very common in OS patients and, together with hypertelorism and hypospadias, are the most frequent findings among the full spectrum of OS clinical manifestations. Besides missense and nonsense mutations, small insertions and deletions scattered along the entire length of the gene, we found that a consistent number of MID1 alterations are represented by the deletion of single coding exons. Deep characterization of one of these deletions reveals, for the first time within the MID1 gene, a complex rearrangement composed of two deletions, an inversion and a small insertion that may suggest the involvement of concurrent non-homologous mechanisms in the generation of the observed structural variant.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2013.05.009DOI Listing

Publication Analysis

Top Keywords

complex rearrangement
8
opitz g/bbb
8
g/bbb syndrome
8
mid1 alterations
8
hypertelorism hypospadias
8
mid1 gene
8
mid1
5
rearrangement exon
4
exon genomic
4
genomic region
4

Similar Publications

Significant progress in determining the molecular origins and resistance mechanisms of mantle cell lymphoma (MCL) has improved our understanding of the disease's clinical diversity. These factors greatly impact prognosis in MCL patients. Given the dynamic alterations in MCL clones and disease evolution, it is crucial to recognize high-risk prognostic factors at diagnosis and relapse.

View Article and Find Full Text PDF

Sulfur functionalized diamondoid phosphines enable building nanocomposites interfacing sp-carbon and gold nanolayers.

Nanoscale

January 2025

Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), UMR CNRS 6302, Université de Bourgogne, 9 avenue Alain Savary, 21078 Dijon, France.

Interfacing metal frameworks with carbon-based materials is attractive for the bottom-up construction of nanocomposite functional materials. The stepwise layering of difunctionalized diamantanes and gold metal from physical and chemical vapor deposition for the preparation of nanocomposites inverts the conventional preparation of metal-organic frameworks (MOFs) and self-assemblies, where the metal is introduced first, and this method delivers metal surfaces with modified properties originating from the sp-carbon core. However, appropriate diamondoid candidates for such an approach are rare.

View Article and Find Full Text PDF

The packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.

View Article and Find Full Text PDF

Objective: To present a case of a couple with 20 years of infertility and 10 recurrent in vitro fertilization (IVF) failures, identifying a paternal complex chromosome rearrangement using high-resolution karyotype together with preimplantation genetic testing for structural rearrangements (PGT-SR) and utilizing IVF-intracytoplasmic sperm injection to achieve a successful pregnancy.

Design: Case report.

Setting: Al Ain Fertility Center, Abu Dhabi, United Arab Emirates.

View Article and Find Full Text PDF

Breast cancer is a highly heterogeneous disease whose prognosis and treatment as defined by the expression of three receptors-oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 (HER2; encoded by ERBB2)-is insufficient to capture the full spectrum of clinical outcomes and therapeutic vulnerabilities. Previously, we demonstrated that transcriptional and genomic profiles define eleven integrative subtypes with distinct clinical outcomes, including four ER subtypes with increased risk of relapse decades after diagnosis. Here, to determine whether these subtypes reflect distinct evolutionary histories, interactions with the immune system and pathway dependencies, we established a meta-cohort of 1,828 breast tumours spanning pre-invasive, primary invasive and metastatic disease with whole-genome and transcriptome sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!