Background: Hypoxia-inducible factor-1α (HIF-1α) is an important transcription factor that modulates cellular responses to hypoxia and also plays critical roles in cancer progression. Recently, somatic mutations and decreased copy number of mitochondrial DNA (mtDNA) were detected in hepatocellular carcinoma (HCC). These mutations were shown to have the potential to cause mitochondrial dysfunction. However, the effects and mechanisms of mitochondrial dysfunction on HIF-1α function are not fully understood. This study aims to explore the underlying mechanism by which mitochondrial dysfunction regulates HIF-1α expression.
Methods: Human hepatoma HepG2 cells were treated with various mitochondrial respiration inhibitors and an uncoupler, respectively, and the mRNA and protein expressions as well as transactivation activity of HIF-1α were determined. The role of AMP-activated protein kinase (AMPK) was further analyzed by compound C and AMPK knock-down.
Results: Treatments of mitochondrial inhibitors and an uncoupler respectively reduced both the protein level and transactivation activity of HIF-1α in HepG2 cells under normoxia or hypoxia. The mitochondrial dysfunction-repressed HIF-1α protein synthesis was associated with decreased phosphorylations of p70(S6K) and 4E-BP-1. Moreover, mitochondrial dysfunction decreased intracellular ATP content and elevated the phosphorylation of AMPK. Treatments with compound C, an AMPK inhibitor, and knock-down of AMPK partially rescued the mitochondrial dysfunction-repressed HIF-1α expression.
Conclusions: Mitochondrial dysfunctions resulted in reduced HIF-1α protein synthesis through AMPK-dependent manner in HepG2 cells.
General Significance: Our results provided a mechanism for communication from mitochondria to the nucleus through AMPK-HIF-1α. Mitochondrial function is important for HIF-1α expression in cancer progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagen.2013.06.004 | DOI Listing |
Sci Rep
January 2025
Department of Orthopedic Surgery at the First Affiliated Hospital, Harbin Medical University, Harbin, China.
Osteoporosis (OP) is a prevalent age-related bone metabolic disease. Aging and mitochondrial dysfunction are involved in the onset and progression of OP, but the specific mechanisms have not been elucidated. The aim of this study was to identify novel potential biomarkers associated with aging and mitochondria in OP.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
Background: Mitochondrial dysfunction and damage can result in the release of mitochondrial DNA (mtDNA) into the cytoplasm, which subsequently activates the cGAS-STING pathway, promoting the onset of inflammatory diseases. Various factors, such as oxidative stress, viral infection, and drug toxicity, have been identified as inducers of mitochondrial damage. This study aims to investigate the role of mtDNA as a critical inflammatory mediator in the pathogenesis of ketamine (KET)-induced cystitis (KC) through the cGAS-STING pathway.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Microtia is a congenital malformation characterized by underdevelopment of the external ear. While chondrocyte dysfunction has been implicated in microtia, the specific cellular abnormalities remain poorly understood. This study aimed to investigate mitochondrial dysfunction in microtia chondrocytes using single-cell RNA sequencing.
View Article and Find Full Text PDFJ Clin Periodontol
January 2025
Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.
Aim: To explore the potential roles of mitochondrial dysfunction in the initiation of inflammation in periodontal macrophages and to determine the mechanism underlying the involvement of dynamin-related protein 1 (Drp1) in macrophage inflammatory responses through its interaction with hexokinase 1 (HK1).
Materials And Methods: Gingival tissues were collected from patients diagnosed with periodontitis or from healthy volunteers. Drp1 tetramer formation and phosphorylation were analysed using western blot.
Mol Autism
January 2025
Human Anatomy Department, Nanjing Medical University, No.101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu, People's Republic of China.
Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication challenges, and repetitive behaviors. Despite extensive research, the molecular mechanisms underlying these neurodevelopmental abnormalities remain elusive. We integrated microscale brain gene expression data with macroscale MRI data from 1829 participants, including individuals with ASD and typically developing controls, from the autism brain imaging data exchange I and II.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!