Impaired skeletal muscle mitochondrial function in morbidly obese patients is normalized one year after bariatric surgery.

Surg Obes Relat Dis

Department of Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands; Department of Human Biology, School for Nutrition, Toxicology and Metabolism, NUTRIM, Maastricht, the Netherlands. Electronic address:

Published: September 2014

Background: Obesity and type 2 diabetes are associated with impaired skeletal muscle mitochondrial metabolism. As an intrinsic characteristic of an individual, skeletal muscle mitochondrial dysfunction could be a risk factor for weight gain and obesity-associated co-morbidities, such as type 2 diabetes. On the other hand, impaired skeletal muscle metabolism could be a consequence of obesity. We hypothesize that marked weight loss after bariatric surgery recovers skeletal muscle mitochondrial function.

Methods: Skeletal muscle mitochondrial function as assessed by high-resolution respirometry was measured in 8 morbidly obese patients (body mass index [BMI], 41.3±4.7 kg/m(2); body fat, 48.3%±5.2%) before and 1 year after bariatric surgery (mean weight loss: 35.0±8.6 kg). The results were compared with a lean (BMI 22.8±1.1 kg/m(2); body fat, 15.6%±4.7%) and obese (BMI 33.5±4.2 kg/m(2); body fat, 34.1%±6.3%) control group.

Results: Before surgery, adenosine diphosphate (ADP)-stimulated (state 3) respiration on glutamate/succinate was decreased compared with lean patients (9.5±2.4 versus 15.6±4.4 O2 flux/mtDNA; P<.05). One year after surgery, mitochondrial function was comparable to that of lean controls (after weight loss, 12.3±5.5; lean, 15.6±4.4 O2 flux/mtDNA). In addition, we observed an increased state 3 respiration on a lipid substrate after weight loss (10.0±3.2 versus 14.0±6.6 O2 flux/mtDNA; P< .05).

Conclusion: We conclude that impaired skeletal muscle mitochondrial function is a consequence of obesity that recovers after marked weight loss.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.soard.2013.03.009DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
24
muscle mitochondrial
20
impaired skeletal
12
bariatric surgery
12
kg/m2 body
12
body fat
12
mitochondrial function
8
morbidly obese
8
obese patients
8
year bariatric
8

Similar Publications

Objectives: This study aims to investigate the prognostic value of Temporal Muscle Thickness (TMT) in Chinese patients with newly diagnosed isocitrate dehydrogenase (IDH) wild-type glioblastoma.

Methods: Data were retrospectively collected from patients with isocitrate dehydrogenase wild-type genotype glioblastoma, who underwent surgical treatment and concurrent chemoradiotherapy at our center between May 2019 and May 2023. Multi-model and multivariate Cox regression were used to examine factors associated with overall and progression-free survival.

View Article and Find Full Text PDF

Anatomical considerations for thread-based brow lifting and wrinkle treatment.

J Dermatolog Treat

December 2025

Division in Anatomy and Developmental Biology, Department of Oral Biology, Human Identification Research Institute, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea.

This review explores the anatomical considerations and technical aspects of thread lifting for the forehead and eyebrow, focusing on the relationships between vascular structures, muscular anatomy, and age-related changes in the forehead-eyebrow complex. It highlights the critical importance of understanding neurovascular pathways, particularly the supratrochlear and supraorbital vessels, as well as the appropriate thread placement techniques necessary for optimal outcomes. The review demonstrates that I-shaped threads, when placed beneath the frontalis muscle, provide a safer and equally effective alternative to traditional U-shaped designs.

View Article and Find Full Text PDF

The purpose of this study was to investigate the ability of mechanotherapy to enhance recovery or prevent loss of muscle size with atrophy, in female rats. Female F344/BN rats were assigned to weight bearing (WB), hindlimb suspended (HS) for 14 days with reambulation for 7 days without (RA) or with (RAM) mechanotherapy (study 1), or to WB, HS for 7 days, with (HSM) or without mechanotherapy (study 2) to gastrocnemius. Muscle fiber cross sectional area (CSA) and type, collagen, satellite cell number, and protein synthesis (K) and degradation (K) were assessed.

View Article and Find Full Text PDF

Intramuscular inhibition of glycogen phosphorylase improves motor function in spinal cord injury.

Biochem Biophys Res Commun

January 2025

Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.

Motor dysfunction in various diseases and aging is often accompanied by skeletal muscle atrophy and reduced axonal projections from motor neurons to the skeletal muscles. While several studies have investigated the correlations and molecular mechanisms between muscle atrophy and motor neuron denervation to explain the pathology of motor diseases, it remains unclear whether skeletal muscle atrophy directly causes axonal denervation of motor neurons. Here, we used a casts-attached mouse model which represents muscle atrophy and motor dysfunction in the hindlimbs to explore how skeletal muscle atrophy affects motor neuronal axon projections.

View Article and Find Full Text PDF

Dynamics of tissue repair regulatory T cells and damage in acute Trypanosoma cruzi infection.

PLoS Pathog

January 2025

Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina.

Tissue-repair regulatory T cells (trTregs) comprise a specialized cell subset essential for tissue homeostasis and repair. While well-studied in sterile injury models, their role in infection-induced tissue damage and antimicrobial immunity is less understood. We investigated trTreg dynamics during acute Trypanosoma cruzi infection, marked by extensive tissue damage and strong CD8+ immunity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!