Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is currently much interest in developing technology to use microlgae or cyanobacteria for the production of bioenergy and biomaterials. Here, we summarize some remarkable achievements in strains improvement by traditional genetic engineering and discuss common drawbacks for further progress. We present general knowledge on natural microalgal-bacterial mutualistic interactions and discuss the potential of recent developments in genetic engineering of multispecies microbial cell factories. This synthetic biology approach would rely on the assembly of complex metabolic networks from optimized metabolic modules such as photosynthetic or nitrogen-fixing parts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tibtech.2013.05.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!